一只抛物线c:y²=2px,的焦点为f,a为c上异于原点的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:31:04
一只抛物线c:y²=2px,的焦点为f,a为c上异于原点的
已知抛物线C:y^2=2px的焦点为F,点k(-1,0)为直线l与抛物线c准线的交点,直线l与抛物线C相交于AB两点,点

(1)∵点K(-1,0)为直线l与抛物线C准线的交点∴-p/2=-1,p=2,由此能求出抛物线C的方程y^2=4x.(2)设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-

抛物线C:y^2=2px p>0 的焦点为F,点M在C上,|MF|=5,若一MF为直径的圆过点(0,2),则C的方程为?

抛物线焦点F(p/2,0),准线x=-p/2设M坐标为M(a,b),则满足b²=2paMF=5,转化为M到准线的距离=5,得a=5-p/2MF是圆直径,圆心横坐标为(5-p/2+p/2)/2

已知抛物线C:y方=2px(p>0)过点A(1,-2).求抛物线C的方程,并求其准线方程

y方=2px(p>0)过点A(1,-2).(-2)^2=2p*1p=2y^2=2*2x=4x准线方程x=-p/2=-1过抛物线y^2=2px(p>0)焦点坐标F(p/2,0)设直线斜率k:y=k(x-

已知直线l:y=2x-4被抛物线C:y^2=2px(p>0)截得的弦长ab=3根号5.(1)求抛物线C的方程

用y=2x-4代入抛物线方程,得:4x^2-16x+16=2pxx^2-(4+p/2)x+4=0x1+x2=4+p/2x1x2=4ab=3根号5(ab)^2=45=(x1-x2)^2+(y1-y2)^

已知抛物线C:y^2=2px(p>0)的焦点F在直线l:2x-2y-1=0上,①求抛物线C的方程

y^2=2x再问:���再答:再答:���ɲ��ɰɡ�

已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点的距离为5.设直线y=kx+b与抛物线C交于两点A(X1,Y

因为横坐标为4的点到焦点距离与到x=-p/2距离相等(抛物线定义),所以求得p=2.抛物线方程为y^2=4x.与直线方程联立消去x得到关于y的一元二次方程y^2-4y/k+4b/k=0.由韦达定理可知

已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点距离为5 设直线y=kx+b与抛物线C交于A(X1,Y1),

准线为x=-p/2根据抛物线定义x+p/2=5题目中x=4p/2=1p=2所以抛物线方程:y²=4x后边还有什么问题,请补充或者追问

已知过抛物线C:y^2=2px(p>0)的焦点F的直线l交抛物线于A、B两点

(1)设直线方程y=k(x-p/2)代入抛物线方程连列得y^2-2py/k-p^2=0有y1y2=p^2根据题意有x1x2=^2/2p*^2/2p=1得p=2(p>0)(2)作出图象可知直线OK的斜率

如图所示,已知抛物线C:y平方=2px(p>0)的焦点F到y轴的距离为1

(1)抛物线C:y平方=2px∵焦点F到y轴的距离为1∴p/2=1,p=2∴抛物线C的方程为y²=4x(2)设M(m²/4,m)过M做作MM'⊥x轴,垂足为M'M在x轴上方时,m>

已知抛物线C:y²=2Px的焦点与双曲线

X²/3一y²=1的右焦点为(2,0)所以p=4,抛物线C:y²=16x如图,可以看出过F点垂直于l的线段就是最短距离用公式得14/5再问:我也算到这个,不知对不对再答:

已知抛物线C:y²=2px(P>0)的焦点为F 若过F的直线L与C相交于A B两点 若AB的垂直平分线L’与C相交于M

解题思路:本题根据四点共圆以及AB垂直平分线得到MN是直径即可解题过程:

设抛物线y平方=2px(p>0)的焦点为F,经过点F的直线交抛物线与A.B两点,点C在抛物线的准线上,且BC平行x轴,证

设A(x1,y1),B(x2,y2),则C(-p/2,y2)设直线AB:x=ky+p/2,代入y^2=2px得y^2-2pky-p^2=0所以y1y2=-p^2,y2=-p^2/y1OA的斜率为k1=

已知抛物线C:y^2=2px的焦点为F(1,0),过点M(a,0)

焦点为(1,0),所以p=2,抛物线方程为y^2=4xa=1时,点斜式(y-0)/(x-1)=2解得y=2x-2代入得(2x-2)^2=4x化简得x^2-3x+1=0设A(x1,2x1-2)B(x2,

求直线方程已知抛物线C:y的平方=2PX过点A(1,-2)直线L过抛物线C的焦点F与抛物线C交于A,B两点,弦AB的长为

将x=1,y=-2代入抛物线方程得4=2p,所以解得p=2,p/2=1,因此抛物线方程为y^2=4x,焦点坐标为F(1,0),设直线AB方程为y=k(x-1),代入抛物线方程得k^2(x-1)^2=4

已知抛物线C:y^2=-2px(p>0)上横坐标为-3的一点与其焦点的距离为4,设动直线y=k(x+2)与抛物线C相较于

易知,抛物线C:y^2=-4x.故可设点A(-a^2,2a),B(-b^2,2b).M(m,0).由题设知,点A,B,(-2,0)共线,===》ab=-2.再由题设知,[-2a/(m+a^2)]+[-

已知抛物线C:y^2=2px(p>0)

A(1,-2)代入得:4=2p,p=2,故抛物线方程为:y^2=4x准线方程为:x=-p/2=-1OA与X轴的夹角为a,则tana=2/1=2,sina=2√5/5设L与X轴的交点为(X,0),则|X