一均匀带电球壳,它的面电荷密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:23:15
无限大的均匀带电平板A周围的电场强度是E=σ/ε(运用高斯定理可得).而B板和A板将在静电引力作用下产生静电感应,即远离A板的那面电荷为零,与A板对应的那面和A板上一样,但方向相反!想一下电容器就能明
B均匀带电球面,电场是对称分布的,高斯面的选取就选和带电球面同球心的球面,这样高斯面上的各点的场强大小相等,方向沿着球半径,也就是各点的球面法向方向.高斯面的电场强度通量Φe=∮E×dS(矢量积分)=
答案是C.某一点电荷在某处产生的场强可以用库仑定律计算,显然不为0.球内场强处处为零是因为整个球面在该处的场强叠加为0.这可以通过电场的高斯定理来解释.
一:球内场强0,球外场强公式同点电荷.二:电场强度的分布同“一”,球心O的电势等于球表面的电势,公式同点电荷.
这个没有办法用高斯定理做,假设用高斯,首先要做个闭合的面,这个面只能是个球面(别的面就更复杂了),而这个球面上的场强肯定是大小不均的,你又不能用电量除以面积积分得场强.要求解的话,要积分,把半球面细分
把半球面看作许多圆环,积分即可没有必要在这问这些问题,把教材静电场例题及课后题做会就行了前提是会点微积分知识
每一个“无限大”均匀带电平面,在空间产生的电场强度为σ/(2ε0),三个平面把空间分成四部分,根据场强叠加原理,四部分空间的场强从左到右分别是:3σ/(2ε0),方向向左;σ/(2ε0),方向向左;σ
点电荷q在距离它r处的电势u=kq/r,k=1/(4πε),ε是真空介电常数.半圆环上任一线元dl上的电荷λdl都相当于一个点电荷,它在圆心处的电势dU=k(λdl)/R.半圆上所有线元上的电电荷都产
在球外,可以将这个球壳等效为全部电荷集中在球心的点电荷处理,电势分布为k*4paiR^2σ/r(r>R)在球内的时候因为球壳上均匀带电,可以证明在内部所受合力为零,因此无论如何移动都不做功,因此是一个
取高斯面S,ES=4πkOS/ε,E=4πkO/εls的单位ms不对.
内部静电屏蔽了
球层的总电荷量为Q=[4Пρ(R2^3-R1^3)]/3所求电势为:V=Q/(K*r)(其中K=9.0*10^9为系数)因球层为均匀,故可用公式V=Q/(K*r)
直接用高斯定理算得
请见图片,大学物理相关问题可以继续交流
运用高斯定理的话,十分简单..将左式中的dS积分后移到右边,E=σ/2ε0(2ε0就是2).但问题是你懂微积分不?
本结论可运用高斯定理解.高斯定理:通过某一闭合曲面的电通量等于该闭合曲面内所含电荷量的4π(圆周率)K倍.即:φ=4πkQ其中ES=φ(E为场强,S为正对面积)取无限大平板上一小面积s则有:E=4πk
对称性.等距离处上下两个表面对通量有贡献,2ES包含的电荷量σS因此2ES=σS/ε匀强电场,与距离无关.
高斯定理:∫Eds=Σqi 典型应用:利用E的分布对称性,合理选取高斯面,使高斯面上各点E的大小相等,面积分∫Eds就简化为ES,S为高斯面的面积.任意一
2(1):球壳内场强为零.球壳外场强E=/4πεR^2.(2)球壳内电势为零.球壳外电势E=/4πεR.3(1):B=((2I/0.5d)-(I/0.5d))μ/2π=μI/πd.(2):x=2d/3
1、(1)球壳内电场为零,外部电场为:E=kQ/(r*r),r为该点到球心的距离.(2)球壳内电势为U=kQ/R.球壳外电势为U=kQ/r.(3)根据(1)(2)的结果绘制.2、无限长导线外一点的磁场