一均匀带电球壳的电荷体密度为p.球壳内表面半径为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:14:22
一均匀带电球壳的电荷体密度为p.球壳内表面半径为
均匀带电球体电荷体密度为p,球体内离球心为r处的电场强度的大小为(

取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/(3

一层厚度为d的无限大平面,均匀带电,电荷体密度为p,求薄层内外的电场强度分布

高斯定理做外面是pd/2ε0里面距离中心层x位置差场强px/2ε0

大学物理电学经典例题一:一半径为R的均匀带电球面,电荷面密度为P,求球面内、外的场强分布;二:一半径为R的均匀带电薄球壳

一:球内场强0,球外场强公式同点电荷.二:电场强度的分布同“一”,球心O的电势等于球表面的电势,公式同点电荷.

1.求半径R,电荷体密度为P的均匀带电球体电场中E和U的分布.

1题取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/

一半径为R的均匀带电球体,其电荷体密度p,求球内,外各点的电场强度(大学物理)

以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即

一均匀带电半圆环,半径为R,电荷线密度为,求环心处的电势?λ

点电荷q在距离它r处的电势u=kq/r,k=1/(4πε),ε是真空介电常数.半圆环上任一线元dl上的电荷λdl都相当于一个点电荷,它在圆心处的电势dU=k(λdl)/R.半圆上所有线元上的电电荷都产

一均匀带电球壳,它的面电荷密度为σ,半径为R.求球壳内、外的电势分布

在球外,可以将这个球壳等效为全部电荷集中在球心的点电荷处理,电势分布为k*4paiR^2σ/r(r>R)在球内的时候因为球壳上均匀带电,可以证明在内部所受合力为零,因此无论如何移动都不做功,因此是一个

一个半径为R的无限长圆柱体均匀带电,电荷体密度为p.求圆柱体内外任意一点的电场强度.

以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再

一均匀带电球体,半径为R,体电荷密度为p,今在球内挖去一半径为r(r

一均匀带电球体,半径为R,体电荷密度为p,今在球内挖去一半径为r(r<R)的球体,求证由此形成的空腔内的电场死均匀的,并求其值.10

均匀带电球体,半径为R,体电荷密度为p,在球内挖去一半径为r(r

由高斯定理可证,空腔内电场为零.再问:大物课你肯定没认真听讲..这问题我弄懂了没事了再答:你说说看再问:恩也有我没表达清楚的错误我是指的在大球里面随便挖一个小球,所以这个物理模型不具有很强的对称性,于

厚度为d的无限大均匀带电平板,电荷体密度为p,求板内外的场强分布.

用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)

求均匀带电球体挖出球形空腔的场强.球体电荷体密度为P空腔球心O' 和球体球心O距离为a

1.设未被挖时均匀带电球体在空腔所在位置处的场强,因为是均匀带点球体,直接采用高斯公式即可.2.再求出被挖去的球体在所求位置处的场强,同样利用高斯公式.3.将一和二求出的场强进行矢量相减即可得所求.

图示一厚度为d的无限大均匀带电平板,电荷体密度为P(设原点在带电平板的中央

用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)

无限长均匀带电圆柱体,电荷体密度为p,绕其轴线以角速度w匀速转动,求圆柱体内外的磁感应强度

外磁场为零,内磁场为B_r=1/2μ_0pw(R^2-r^2),其方方向与角速度方向相同.其中R为圆柱半径,B_r为距离轴线距离为r处的磁场的强度.

关于电荷体密度的难题一个电荷体密度为p的均匀带电球层,内表面半径为R1,外表面半径为R2,设无穷远处为电势零点,求球层中

球层的总电荷量为Q=[4Пρ(R2^3-R1^3)]/3所求电势为:V=Q/(K*r)(其中K=9.0*10^9为系数)因球层为均匀,故可用公式V=Q/(K*r)

求距离均匀带电无限大平面(电荷密度已知)为a处的P处的电场强度

如果电荷密度为p则E=p/2e0,其中e0为介电常数,与距离无关这个要用高斯定律或者微积分推导

已知半径为R的无限长圆柱体内均匀带电,电荷体密度为p,把电势参考点选在轴线上,求柱体内外的电势?

先用高斯定理求出电场分布,再积分得到电势.圆柱体内电场pr/2e,外电场pR^2/2re,e这里是真空介电常数.外电势-(pR^2)(lnr)/(2e),内电势[-(pR^2)(lnr)/(2e)]+

2、一半径为R的带电球壳,表面上均匀带电,电荷量为Q,试求:

2(1):球壳内场强为零.球壳外场强E=/4πεR^2.(2)球壳内电势为零.球壳外电势E=/4πεR.3(1):B=((2I/0.5d)-(I/0.5d))μ/2π=μI/πd.(2):x=2d/3

1.一半径为R的带电球壳,表面上均匀带电,电荷量为Q,试求:

1、(1)球壳内电场为零,外部电场为:E=kQ/(r*r),r为该点到球心的距离.(2)球壳内电势为U=kQ/R.球壳外电势为U=kQ/r.(3)根据(1)(2)的结果绘制.2、无限长导线外一点的磁场