一平面简谐波沿x轴正向传播,若如图p点振动方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:30:05
x=0.24cos(wt+ψ)当t=0时,x=-0.12∴0.24cosψ=-0.12cosψ=-0.5ψ=(2π)/3或(4π)/3所以初相位为(2π)/3或(4π)/3
DX=0处的位移随时间的变化是C图明白吗?然后对位移求导即得速度与t的关系再问:能把式子列出来吗?听不太懂再答:恩,第一步明白吗?就像上面那个人说的那X=0处x=-A*Sint对t求导X‘=-A*Co
1.5πrad再问:A到B不是相差3/4个π吗再答:?怎么会是3π/4呢?是3/4个周期,一个周期是2π,所以是2π×3/4=3π/2rad
分析:从图示可知,O点在t=0时y=0,过一段极小时间后,y>0,所以可知O点的振动方程是y=A*sin(ωt)周期 T=入/u=4/200=0.02秒ω=2π/T=2π/0.02=100π弧度/秒即
正经过平衡位置向下运动,初相位为PI/2
1、在t=1/2时刻,y=4.0×10^-2cos(πt-(π/2))=y=4.0×10^-2cos0º=4.0×10^-2m,该点处于最大位移处,速度为0.2、周期T=2s①若A在前B在后
“若以原点处的质元经平衡位置正向运动时作为计时的起点,”通过这句话可知,方程应该是正弦波.但是因为他前面写的是cos,即余弦波,所以就需要吧相位移动π/2了,如果写成sin正弦波就不需要吧相位移动π/
Bv=波长/T=4m/st=x/v=1s再问:波长是两点最短直线距离。而不是两点间波浪的所有长度是吧再答:是的
1),∵t=0时质元由平衡位置向正方向移动,∴设波函数为:f(x,t)=Asin[(2π/T)t-(2π/λ)x+φ],其中f(x,t)表示x处质点在t时刻的位移.只需确定初项φ,∵v=ðf/
这道题可以用旋转矢量法来求首先令两个波的方程中的x=λ/4,得到改点处的振动方程,然后在以振幅为半径,矢量起点为圆心的圆中,规定一个正方向,然后,找出各自振动方程的初相位,画好后,将两个矢量利用平行四
由图,此时原点处于平衡位置向上运动,也就是相位为-π/2.又波长为2b,即ω=2πf=2πu/2b=πu/b综上选D再问:还是没明白,初相位怎么弄出来的啊·求详解。再答:初相位可以通过旋转矢量法,或者
由振动图像知初相为-π/2而反射波在O点的相位落后2L的距离加一个半波,即反射波初相为φ=-π/2-2π*2L/d-π=π/2-4πL/d反射波往x负方向传播,故y=Acos(ωt+2πx/d+φ)=
由图可知,要使P点第一次到达波峰,则两波均应传播距离x=5m,所以t=xv=520=0.25s由图可知,要使P点第一次到达平衡位置,则两波均应传播距离x′=15m;故所用时间为t′=x′v=1520s
从图上可以看出,O点在t=0时刻x(0)=0,v(0)>0,x(0)=Acosφ=0,φ=π/2,-π/2v(0)=-Aωsinφ>0,sinφ所以φ=-π/2如果用旋转矢量图将更直观.
一平面简谐波沿0x轴传播==〉公式方向沿x轴正方向(波的方向可能变,看公式中的符号)原式可化为:y=5cos(8*(t+3x/8)+π/4)对比波的标准表达式ψ=Acos(w(t-x/u)+φ)w=2
波有波峰和波谷,这句话表示在距原点O为波长/4处,波处于波峰位置.这样,你也就知道了在原点位置处,质元处于0位,振动方向向负方向
靠,今天考试第三大题就是这,如果我会我就做了…
一、y=Acos[w(t-x/u)+φ];---1)这是平面简谐波沿X轴正方向传播的方程;----2)φ代表初相位二、以原点处的质元经平衡位置正方向运动时(即向Y轴正方向)作为计时起点说明:当t=0时
用复数表示跟实数表示一样的.复数表示的那个你取实部就行.这里采用复数的表示方法,是为了描述和分析的便利.因为相位的变化直接可以用复数的相角表示,处理起来简单.在学了波函数以后,你会发现波函数的通解是以