一旗杆顶端A的影子落在坡角为30°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:09:33
小树高4米用相似三角形,旗杆与影子所组成的三角形斜边为10,底为6,又是直角三角形,所以旗杆高8,小树影子为3,树高:影子=8:6=4:3,所以树高3米再问:是4m还是3m啊再答:4米,后头打错了再问
根据勾股定理可知:旗杆的高度为:√(10²-6²)=8(米).因为一天中同一时刻物体的高度与影长成比例.设小树高度为X,则:X:3=8:6.解得:X=4.答:小树高度为4米.再问:
小树高4米用相似三角形,旗杆与影子所组成的三角形斜边为10,底为6,又是直角三角形,所以旗杆高8,小树影子为3,树高:影子=8:6=4:3,所以树高3米
12+2/tg@,@为当时太阳和地面的夹角.
延长BD与AC的延长线交于点E,过点D作CE的垂线,交CE于的F,∵∠BDC=75,∠DCE=30∴∠E=75-30=45,∵CD=4∴EF=DF=2,CF=2√3,∴AB=AF=10+2√3+2即旗
旗杆影子长度/旗杆长度=树影子长度/树高度根据勾股定理,旗杆高8m6/8=3/树高度树4m高
当一地处于正午时,太阳高度角为一天中最大,故即求“北京为13:05时,哪儿处于正午”,根据时差易知该地为于北京以西16度15分,即东经103度45分.
设小明的身高为xm,由题意得:∴87=x1.4,∴x=1.6m,∴小明的身高为1.6m,故答案为:1.6m.
如图,∵ED⊥ADBC⊥AC∴ED∥BC∴△AED∽△ABC∴EDBC=ADAC而AD=8,AC=AD+CD=8+22=30(m),ED=3.2m∴BC=ED•ACAD=3.2×308=12(m)∴旗
把斜坡处长换为水平长度2x4根号3=8根号3,加上20米、再乘以三分之根号三、得三分之20倍根号三加8,没图、不好标字母希望你能看懂再问:再答:你辅助线作错了、延长AD与BC延长线交于E,因为阳光与地
作DE⊥AB于点E.在Rt△ADE中,有AE=DE×tan30°=9×tan30°=33.∴AB=AE+BE=(33+1.2)m.
延长BC交AD于E点,则CE⊥AD.在Rt△AEC中,AC=10,由坡比为1:3可知:∠CAE=30°,∴CE=AC•sin30°=10×12=5,AE=AC•cos30°=10×32=53.在Rt△
由勾股定理可得此时旗杆的顶端与影子的顶端之间的距离是:√(8²+6²)=√100=10米
如图DE=2m BG=3.2m GF=2.8m DH=0.8m∵AC∥EH DE⊥BC FG⊥BC AB⊥BC∴∠EHD=∠ACB 
过点C做CD⊥AB延长线于D点C在斜坡上的位置相对于旗杆偏下,点C到旗杆AB的距离CD=BC*cos15°,BD=BC*sin15°,AD=CD*tg(50°+15°)=BC*cos15°*tg65°
延长AD交BC于E点,则∠AEB=26°作DQ⊥BC于Q在Rt△DCQ中,∠DCQ=30°,DC=8∴DQ=4,QC=8cos30°=43在Rt△DQE中,QE=DQtan26°≈40.4877≈8.
过点D作DE⊥AB,过点C作CF⊥DE可得,四边形BCFE是矩形,则EF=BC=10,BE=CF,∠CDE=30°∴∠ADE=∠ADC-∠CDE=30°在Rt△CDF中,∵CD=8,∠CDF=30°∴
反向延长AC交BD延长线于点E,BD=21;AC=2;因为某一时刻测得1米长竹竿竖直放置时影长1.5米;得CD/DE=1/1.5,得DE.BE就是正常影长,AB/BE=1/1.5.得AB=16