一点倒数存在但不连续的函数图象
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:16:21
这题我能回答,但我刚看到学过数学分析(或高数)然后再学点集合论或者测度论或者实变函数中的集合基数概念的可以回答这种数学题可以在数学论坛或讨论班里问,那样会快一些跟同学讨论也很有意义,别的不多说了需要证
当然存在例如f(x)=x^2*sin(1/x),(x≠0时),f(0)=0导数在0时不连续
结论是否定的.事实上,闭区间I上可导函数的导函数的连续点集必然是I上的稠密集!可参见周民强著《实变函数论》55页思考题5.大致思路如下:首先,记f_n(x)=n[f(x+1/n)-f(x)],则f_n
函数可导一定连续,连续不一定可导,所以不存在楼主所说的函数.再问:你说的我知道,但是我说的是导函数能不能处处不连续,而不是原函数再答:这样的函数不存在,有一本书,周民强著《实变函数论》有讲这个问题,本
某函数的导函数在一点的极限存在,不能说明导函数在此点有定义,所以导数可能不存在.,不过这个点的确是连续的.因为该点附近的点可导再问:答案是不连续再答:。。。。我看看再答:答案怎么解释再问:我给你看原题
狄利克雷函数实数上的狄利克雷函数定义为D(x)=1(如果x是有理数),0(如果x是无理数).魏尔斯特拉斯函数http://baike.baidu.com/view/8697959.htm其中0
恩,的确从图像上基本上无法解释.我想你的原函数肯定是分段函数,在x不等于0时候,为XXX,在x=0时候,f=某个数使得函数连续.而且我相信你证明他在x=0可导不是用导数公式而是用定义(左导=右导那个)
一般来说,连续函数必存在原函数.而存在原函数的函数不一定要求是连续函数.比如说存在第一类间断点(可去间断点、跳跃间断点)的函数.原函数就是对函数进行一次积分,存在必然是无穷个.基本的可以看成是曲线与x
可微的要求比可导严格,可导是对某个自变量而言,而可微是对所有自变量而言,多元函数自变量是多个,要可微,必须函数对所有自变量在改点处都可导.从图像的角度看,可导是从一个方向上的,而可微是从多个方向上的.
二元函数在一点的偏导数存在是该点连续的既非充分也非必要条件.二元函数在一点的可微是在该点连续的充分条件.再问:充分不必要吗?再答:二二元函数在一点的可微是在该点连续的充分条件。如  
错不一定有界,无界反常积分也可能存在定积分也不一定连续,但这个需要函数有界,且在有限个间断点的前提下不连续亦可.
①如果全微分存在,则极限存在、函数连续、偏导数存在;反之,后3者推不出全微分存在.②如果函数的偏导数存在,并且偏导数连续,则全微分存在.③函数连续则极限存在;反之,极限存在时函数不一定连续.④函数连续
你这右导数明显不存在啊……举个例子,f(x)=x,x1,你这图像差不多这样吧右导数lim(f(1+Δx)-f(1))/Δx=lim(2-Δx-1)/Δx=lim(1-Δx)/Δx=﹢无穷,不存在右导数
函数f(x)在一点x0二阶导数存在,只能得到"f'在点x0连续",而不能得到"在x0的邻域一阶导数连续"的结论.再问:函数在一点x0一阶导存在是不是在x0的邻域连续???如果不是有反例吗?再答: 函
错!如果x0是函数f(x)的间断点,但左极限及右极限都存在但不相等,则称x0为函数f(x)的第一类间断点
正确!函数在某一点左右极限均存在,但不相等时的情况!我不记得第一类间断点的定义了,按定义来判断,是不会错的!
不可以,条件是在该点的极限值与该点的函数值相等,才能说明在那一点连续.
可微是偏导数存在的充分条件,偏导数存在是可微的必要条件;可微是连续的充分条件,连续是可微的必要条件;偏导数存在是连续的无关条件.再问:请问这样表述对吗,可微是偏导数存在的充分不必要条件,可微是连续的充
在有理数x=q/p处等于1/p在x为无理数处为0的函数极限处处为0但在有理点不连续这个例子供参考不一定符合你的要求
有狄利克雷函数D(x)=1(x为有理数),0(x为无理数)狄利克雷函数的性质1.定义在整个数轴上.2.无法画出图像.3.以任何正有理数为其周期(从而无最小正周期).4.处处无极限、不连续、不可导.5.