一直P是等边三角形ABC内任意一点,PB=2,角BPC=150度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:22:40
∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵GH‖BC,∴∠AGH=∠B=60°,∠AHG=∠C=60°.∴△AGH是等边三角形,∴GH=AG=AM+MG①同理△BMN是等边三角形,∴MN=
因为PA〈AB即PA〈BC又PB+PC〉BC(三角形两边之和大于第三边)所以PA〈BC〈PB+PC即PA〈PB+PC
延长DP,EP,FP假设FP的延长线交BC与G因为ABC是正三角形,且PD‖AB,PE‖BC,PF‖AC所以,PF=BD,PD=DG,PE=GCPD+PE+PE=BD+DG+DC=BC=a(定值)
:∵△ABC为等边三角形,PD∥AB,PE∥BC,PF∥AC,∴△PHF为等边三角形,∴PF=PH,PD=BH,又△AHE为等边三角形,∴HE=AH,∴PD+PE+PF=BH+PE+PH=BH+HE=
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
EF+GH+MN=2a.其值不会随P的位置变化而变化的.证明:由题意可知:四边形AMPE,BFPG,CHPN都是平行四边形三角形PMG,PFN,PEH都是等边三角形所以EF=AM+GB,GH=BF+N
证明:首先按照题意画出图.然后以C点为轴将三角形APC旋转至AC与BC重合,此时A点与B点重合,P点到达的新位置设为D点.连接DP.由于角DCP为60度且CD=CP,所以三角形DCP为正三角形,所以D
以BC为边在三角形ABC外作三角形BDC,使BD=BP,DC=PA,则三角形BDC全等于三角形PAB(这其实就是将三角形PAB绕点B旋转60度)可得角PBD=ABC=60度,三角形PBD是正三角形所以
5再问:为什么?有详细解答吗,谢谢!再答:连接PAPBPC你用三个小三角形的面积等于等边三角形的面积就可以得到
过A作AM⊥BC交BC于M,作PN⊥AM于N,过P作KP‖AC交AB于K,过K作kQ⊥AC交AC于Q,过k作KH⊥AM交AM于H,过P作PG⊥KH交kH于G,∴PE=MN(1)由PF=KQ,∠KAH=
延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB
∵PB+PC>BC而p是三角形内一点,∴PA
设:AB=BC=AC=aS△PAB=PFa/2S△PBC=PDa/2S△PAC=PEa/2S△ABC=S△PAB+S△PBC+S△PAC=(PD+PE+PF)a/2=√3a²/4PD+PE+
作PH‖AB交AB于H,作FM‖BC交AC于M,\x0d显然三角形AFM和FHP为等边三角形,四边形BDPH和PEMF为平行四边形.\x0dPF=FH,PE=FM=AF,PD=BH\x0d\x0d所以
连接PA,PB,PB则S三角形ABC=S三角形ABP+三角形ACP+三角形BCP1/2*AB*h=1/2*AB*PF+1/2AC*PE+1/2BC*PD因为AB=AC=BC所以PF+PE+PD=h
过P点作BC边的平行线EF,分别交AB、AC于E、F.∵ΔABC为等边三角形,∴∠AFE=∠ABC=60°,又∵∠APE>∠AFE,∴∠APE>60°.在ΔAEP中,∵∠APE>∠AEP,∴AE>AP
证明:2T=(PA+PB)+(PB+PC)+(PC+PA)>AB+BC+CA=3∴T>1.5下边证明PA+PB+PC
以A点为轴心,把三角形ACP顺时针旋转60度.C点就与B点重合,P点到了P1点.AP1=AP=3,BP1=CP=4,角P1AP=60度.角APC=角AP1B连接P1P.可以知道三角形AP1P是正三角形
△PEF是等边三角形.理由:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵PE∥AB,PF∥AC,∴∠PEF=∠ABC=60°,∠PFE=∠ACB=60°,∴∠PEF=∠PFE=60°,∴P
解,实际只有四点:三角形内1点,外4点.以⊿ABC的各边分别向外做正⊿ABP,⊿BCQ,⊿ACR,连接PC,AQ,BR交于一点O.则,P,Q,R,O为满足点.可以证明:OP,OQ,OR分别是AB,BC