1╱1+x^4不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:04:43
§dx/[x(lnx-1)]=§dlnx/(lnx-1)=§dlnln(x-1)=lnln(x-1)
原式=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-∫(x+1)dln(x+1)=(x+1)ln(x+1)-∫(x+1)*1/(x+1)d(x+1)=(x+1)ln(x+1)-∫dx=(x+
令x=1/t则原式=∫(-t^2)/(1+16t^4)dt=令t^2=tank/4代入自己求,我懒得算了.
∫[1/(1+x^4)]dx=1/2∫[(x^2+1)-(x^2-1)]/(1+x^4)dx=1/2{∫(x^2+1)/(1+x^4)dx-∫(x^2-1)/(1+x^4)dx}=1/2{∫(1+1/
答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,
我的解答如下:换元法令x=3/2sint,t∈[-0.5π,0.5π]dx=3/2cost带入后得到∫(1-x)/[√(9-4x^2)]dx=∫(1-1.5sint)1.5costdt/3cost=∫
原式=∫(x+1)/x²+∫xlnxdx=∫x/x²+∫1/x²+1/2∫lnxdx²=∫1/x+∫1/x²+1/2*x²lnx-1/2∫x
∫x^7dx/(x^4+2)=(1/4)∫x^4d(x^4)/(x^4+2)=(1/4)x^4-(1/4)ln(x^4+2)+C∫(3x^4+x^3+4x^2+1)dx/(x^5+2x^3+x)=∫(
欢迎追问哦!亲再问:�Ǹ���������ӻ��и�X再答:������˼����������Ŀ�ˣ����¥�µ���ʾ������һ�£�
拆项计算
∫1/sin⁴xdx=∫csc⁴xdx=∫csc²xd(-cotx)=-cotxcsc²x+∫cotxd(csc²x)=-cotxcsc²
令1/[(x-1)(x²+4x+9)]=A/(x-1)+(Bx+C)/(x²+4x+9)==>1=A(x²+4x+9)+(Bx+C)(x-1)1=Ax²+4Ax
原式=∫[(x-1)(x+4)+8]/(x-1)dx=∫[x+4)+8/(x-1)dx=x²/2+4x+8ln|x-1|+C
(1/3)ln(3x+4)+C,C为任意实数再问:过程再答:∫1/(3x+4)dx=1/3∫1/(3x+4)d(3x+4),令t=3x+4,原式=1/3∫1/tdt=1/3lnt+C即原式=1/3ln
1.∫_(-1)^(2)1/(11+5x)³dx=(1/5)∫_(-1)^(2)1/(11+5x)³d(5x)=(1/5)∫_(-1)^(2)(11+5x)^(-3)d(11+5x
积分:(x^2+1)/(x^4+1)dx=积分:(1+1/x^2)/(x^2+1/x^2)dx(上下同时除以x^2)=积分:d(x-1/x)/[(x-1/x)^2+(根号2)^2]=1/根号2*arc