一矩形木闸门,宽10米,高8米,水面与闸门,预齐,求闸门所受的水压力

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:03:19
一矩形木闸门,宽10米,高8米,水面与闸门,预齐,求闸门所受的水压力
如图,一隧道的横截面积是有一段抛物线及矩形的三边围成的,隧道宽BC10米,矩形部分高AB3米,抛物线的最高点E离地面OE

(1)由题知隧道宽BC10米,矩形部分高AB3米,抛物线的最高点E离地面OE=6米可得A、B、C、D、E的坐标分别为(-5,3)、(-5,0)、(5,0)、(5,3)、(0,6)设解析式为y=x^2+

物理受力分析和计算 三峡永久船闸共有24扇人字闸门人字门平均高约40米,宽20米,厚3米,重达850吨,面积接近两个篮球

再问:到底是看上面的20/2,还是30/2?麻烦再清晰地打一遍过程行吗?再答:20/2是打错了嘛1*10^3*10*30/2*20*40=1.2*10^8N

一辆卡车装满货后,高比宽多2米.恰好通过隧道(上面半圆,下面矩形长5米,宽4米)

设车宽X米,高X+2米,要过隧道,则车顶的宽度得小于等于车顶处隧道的宽度即车宽的一半、车高减去矩形高、与半圆的半径组成直角三角形,因为题目“矩形长5米,宽4米”,所以有:〔(X+2)-4〕^2+(X/

一辆卡车装满货物后,它的高比宽多2米,且恰好通过上部为半圆形的隧道,隧道下方的矩形长为5米,宽为4...

设卡车的高为x米,则其宽为(x-2)米,由图则有2.5^2=(2.5-[5-(x-2)]/2)^2+(x-4)^2,解得x=5.688

在长10cm,宽8cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是多少

所谓相似,就是矩形的边成比例关系,原矩形的边为10和8他们的比为10:8=5:4,则留下的矩形的的边之比也为5:4,只能从长边截即将10cm的边截掉x后成为短边那么有长边:短边=长边:短边8/(10-

一矩形池,其面积48平方米,其对角线长10米,求其周长.

1.x的平方+y的平方=1002.xy=481可以换为(x-y)的平方+2xy=100(x-y)的平方=43.x-y=2由2和3得x=8y=6周长=2(x+y)=28

一辆卡车装满货物后高4米宽.2.8米这辆车能通过隧道吗此隧道上部为一个半圆,下部为一矩形,宽4米,6米

作弦EF∥AD,且EF=2.8,OH⊥EF于H,连接OF,(2分)由OH⊥EF,得HF=1.4,(3分)又OH=22-1.42=2.04>1.96=1.4,(4分)∴AB+OH>2.6+1.4=4(米

一矩形的长与宽之比为3:2,若矩形的长和宽分别增加3米和2米,则矩形的面积增加30平方米,求这个矩形的长和宽.

设长为x米,宽为y米.由题意得:x:y=3:2(x+3)(y+2)−xy=30解得:x=6y=4经检验是原方程组的解.答:长为6米,宽为4米.

一辆卡车装满货物后,高4米,宽2.8米,这辆卡车能通过横截面(下一矩形,上一半圆)的隧道吗?

(1)如图,设半圆O的半径为R,则R=2作弦EF//AD,且EF=2.8,OH⊥EF于H,连结OF由OH⊥EF,得HF=1.4又OH=∴AB+OH>2.6+1.4=4(米)∴这辆卡车能通过此隧道

如图,一隧道的横截面是由一段抛物线及矩形的三边围成的,隧道宽BC=10米,矩形部分高AB=3米,抛物线型的最高点E离地面

设y=-Ax^2+6,由于经过点(-5,3),(5,3)解得A=3/25抛物线的解析式:y=-3x^2/25+6(5>=x>=-5)由图(图在哪里?)可知,货车靠近y轴时是最可能通过的(看形状么..)

有一矩形闸门,高三米宽两米,当水面高出闸门顶2米时求闸门一侧所受的水压力

在矩形闸门上,距离闸门顶x、高为dx、宽为2米的微元所受到的水压力为∫(0,3)ρg(2+x)*2dx=21ρg=21*1.0*10^3*9.81=2.0601*10^5(N)

有一矩形闸门,高三米宽两米,当水面高出闸门顶2米时求闸门一侧所受的水压力.课本附有答案为17.3KN

闸门的一侧所受的水压力F=PS=1000×10×1/2×16×20×16=2.56×10^7(Pa)重力加速度g=10m/s^2水密度=1000kg/m^3高=16m闸门

一小区绿化过程中,有一个矩形草坪,长20米,宽10米,沿其四周要修一宽度相等的环形小路,是得小路内外边缘所成的矩形相似,

不能,假设可以修成,可设其宽度为a,如果相似,则:20+2a=2(10+2a),可以解得a=0,故不能修成^_^

如图,一隧道的横截面是由一段抛物线几矩形的三边围成的,隧道宽BC=10米,矩形部分高AB=3米

设y=-Ax^2+6,由于经过点(-5,3),(5,3)解得A=3/25抛物线的解析式:y=-3x^2/25+6(5>=x>=-5)由图(图在哪里?)可知,货车靠近y轴时是最可能通过的(看形状么..)

如图 一隧道的横截面是由一段抛物线及矩形的三边围成的,隧道宽BC=10米,矩形

(1)由题知隧道宽BC10米,矩形部分高AB3米,抛物线的最高点E离地面OE=6米可得A、B、C、D、E的坐标分别为(-5,3)、(-5,0)、(5,0)、(5,3)、(0,6)设解析式为y=x^2+

有一个宽为20米,高为16米的矩形闸门直立于水中,它的一边与水面相齐,求闸门的一侧所受的水压力.

重力加速度g=10m/s^2水密度=1000kg/m^3高=16m闸门的一侧所受的平均水压力=(1/2)水密度*重力加速度*高=(1/2)*1000*10*16=80kPa

有一等腰梯形闸门,两条底边各长10m和6m,高为20m,较长的底边与水面相齐,求闸门的一侧所受的压力

由深度与宽度的关系式为L=﹣0.2h+10于是取其中一dh其所受压力为dF=ρghLdh在对两边进行积分可得F≈1.47×10∧7N

一个顶为10米,高位12米的等腰三角形闸门,垂直置于水中,顶与水面相齐,试计算一侧所受的水压力

基础积分运算,可以由物理知识得到P=ρgh,P=F/S.所以有F=∫Pds.对于一个顶为10,高为12的等腰三角形,其在深度为x处的面积微元为ds=[(12-x)×10/12]×dx.综合以上叙述有压