(2x-3)^n收敛域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:32:26
(2x-3)^n收敛域
求幂级数 ∑(∞,n→0)(2n+1)x^n的收敛域及和函数.

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求幂级数的和函数,求幂级数∑(上是无穷大,下是n=1){[(-2)^n+3^n]/n}*(x-1)^n的收敛域,

本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造

求幂级数∑(∞,n=1)(x-1)^n/n2^n的收敛半径收敛域

后项比前项的绝对值的极限=|x-1|/2  收敛半径R=2x=3级数发散,x=-1级数收敛 收敛域[-1,3)

求幂级数∑(x-1)∧n/(n×2∧n)的收敛域

求幂级数Σ[(x-1)^n]/(n*2^n)的收敛域.  利用比值判别法,当   lim(n→∞)|u[n+1](x)/u[n](x)|  =lim(n→∞)|{[(x-1)^(n+1)]/[(n+1

求级数的收敛半径∑((1/2∧n)+3∧n)×x∧n

再问:错的,答案是三分之一再答:

级数(求和)1\n^x的收敛域为多少

讨论x-级数:1+1/2^x+1/3^x+...+1/n^x+.的敛散性,其中x为任意实数.当x>1时,将x-级数按一项,两项,四项,八项,.括在一起,得到:级数(1)1+(1/2^x+1/3^x)+

级数(∞∑n=0)x^2n/(2n)!,求其收敛域与和函数

∑x^2n/(2n)!,(n:0→∞)│An+1/An│=│An+1/An│=x²/[(2n+2)(2n+1)]令上式为1,n→∞,R=x→∞,故收敛域为实数域设S(x)=∑x^2n/(2n

求级数 ∑(x-3)^n / n-n^3 的收敛半径和收敛域!

令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,

求级数的收敛域∞ (2x+1)^n∑ __________n=1 3n-1

令t=2x+1,∞t^n原式化为∑__________n=13n-1a3n+13n-1因为ρ=lim|__n+1_______|=lim__________=lim__________=1n→∞an→

判断幂级数无穷∑n=1 【((-3)^n+5^n)/n】*X^n的收敛半径和收敛区域

设an=【((-3)^n+5^n)/n】则收敛半径=an/an+1=1/5x=1/5同1/n比较发散x=-1/5莱布尼茨判别发收敛

求幂级数1+∑(∞,n=1)x^n/n的收敛半径、收敛域及和函数

f=∑(∞,n=1)x^n/nf‘=∑(∞,n=1)x^(n-1)=1/(1-x)|x|

matlab迭代计算X(n+1)=3/(X(n)+2),给出可能的收敛值,并给出不同收敛值对应的初值范围

x=-100:100;%x的初值范围y=zeros(201,1);t=100;%迭代次数forn=1:201te=x(n);form=1:ty(n)=3/(te+2);te=y(n);endend再问

求幂级数∑(n=1,∞) x^n/n·3^n的收敛域

已经做过:lim(1/[(n+1)3^(n+1)]/(1/n·3^n)=1/3,故收敛半径为3当x=3时,为调和级数,发散当x=-3时.为收敛的交错级数收敛域为[-3,3)

设幂级数∑(n=2→∞)an(x+1)^n在x=3条件收敛,则该幂级数的收敛半径为多少?求解答

收敛半径R=3-(-1)=4再问:解释一下可以吗?。。再答:条件收敛点只能在收敛域与发散域的分界点上

幂级数收敛域幂级数(n=1 ∞) ∑(√(n+1)-√(n))*(3x-1)^n

|a[n+1]/a[n]|=(√(n+2)-√(n+1))/(√(n+1)-√(n))*|(3x-1)|,令n趋于无穷,2|3x-1|

求幂级数∑【n=0 to 无穷】(x^n)/{n[3^n+(-2)^n]}的收敛域 答案是[-3,3),

首先确定收敛半径,这个直接用书上的公式,两项相除求极限就可以了,极限是3,所以收敛半径R=3现在再来看端点处的熟练情况,x=3的时候就掠过啦,现在来说x=-3的情况,这是交错级数,一般的书上只给了一个

求幂级数∑ 【n=1到无穷】】(-1)^(n-1 )* (2x)^n 的收敛域 求步骤

先求收敛半径.lim(n→∞)|(-1)^n*2^(n+1)/((-1)^(n-1)*2^n)|=2,所以收敛半径R=1/2.当x=1/2时,幂级数为∑(-1)^(n-1),是发散的;当x=-1/2时

求级数∑∞n=1(1/2n)(x^n^2)的收敛域

级数为   ∑{n>=1}[x^(n^2)]/(2n),由于   lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)|  =lim(n→inf.)|x^

求级数(4n^2+4n+2)x^2n/(2n+1)的收敛域与和函数

分成2个级数:(4n^2+4n+2)x^2n/(2n+1)=(2n+1)x^2n+x^2n/(2n+1)级数(2n+1)x^2n的收敛域(-1,1)级数x^2n/(2n+1)的也是收敛域(-1,1)故