(3)lim(1 xy)*(1-x) (x,y)→(0,1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:15:04
(3)lim(1 xy)*(1-x) (x,y)→(0,1)
lim[1+sin(xy)]^(xy)其中x,y均趋近于0

如果是1/xy次方=lim{(1+sin(xy))^(1/sin(xy))}^sin(xy)/xy=e.如果是xy次方,就是1再问:我开始也认为很简单嘛=1,但老师给的答案是e再答:如果是xy次方,就

求下列各极限 lim(x,y)→(0,1) (2-xy)/(x^2+2y)

f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-

求极限lim(x,y)→(0,0) [1-cos(xy)]/xy^2.

lim(x,y)→(0,0)[1-cos(xy)]/xy^2=lim(x,y)→(0,0)(x²y²/2)/xy^2..=lim(x,y)→(0,0)x=0再问:[1-cos(xy

lim (x,y)->(0,0) xy/[根号下(xy+1)]-1的值为

(x,y)->(0,0)=>u=xy->0lim(x,y)->(0,0)xy/[√(xy+1)-1]=limu->0u/[√(u+1)-1]=limu->0u*[√(u+1)+1]/u=limu->0

求极限lim x→0 y→0 2xy/根号下1+xy 然后-1 {不在根号里}

limx→0y→02xy/根号下1+xy然后-1=limx→0y→02xy[√(1+xy)+1]/[√(1+xy)-1][√(1+xy)+1]=limx→0y→02xy[√(1+xy)+1]/xy=l

在线等!求极限问题lim. xy/(1-e^xy)(x.y)~(0,0)结果等于多少?请赋予详细解释!谢谢啦!

令xy=t,则xy/(1-e^xy)=t/(1-e^t),满足洛必塔法则条件,当(x.y)→(0,0)时,limxy/(1-e^xy)=limt/(1-e^t)=lim1/(—e^t)=—1

求极限lim(1-cosxy)/x²y²,xy都趋于0

假设沿着y=kx趋近于原点,则:lim[1-cos(xy)]/(xy)^2=lim[1-cos(kx)^2]/(k^2*x^4)=lim2{sin[(kx)^2/2]}^2/{[(kx)^2/2]^2

求极限:lim xy分之{[(1+xy)开3次根号]-1},(x,y)→(0,0)

这是一个重要极限(1+x)开n次根号—1趋向于x/n所以呢lim分子xy/3分母xy结果1/3

二元函数求极限问题lim[﹙2-e^xy﹚^1/2]-1=lim1/2(1-e^xy)(x,y)→(0,0) (x,y)

感觉从左式不能推导出右式,猜测:是不是错误地使用了什么方法,比如洛必达法则?再问:右式是左式推出来的,就是看不懂啊

数学极限计算lim(x,y)→(0,0) xy/ [√(2-e^xy)-1]= lim(x,y)→(0,0) -xy/(

利用幂级数在点 (0,0) 的展开式:e^xy=1+xy+x²y²/2!+x³y³/3!+.略去二次项及更高次项无穷小,得 e^x

求极限lim 2/(3^n-1)

3^n极限为无穷大,lim2/(3^n-1)=0

lim(x,y)-(0,0)=根号下(xy+9)-3/xy

=lim(x,y)-(0,0)[(xy+9)-9]/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)(xy)/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)1/[

lim(x-3/x+1)^x lim趋向无穷大

关键:分类讨论||x-1|-3|+|3x+1|当x≥4,则:x-4+3x+1=4x-3当-2≤x≤-1/3则:|1-x-3|-3x-1=2+x-3x-1=1-2x当x≤-2.则:-x-2-3x-1=-

用定义法证明二重极限lim(√(xy+1)-1)/xy=1/2 x,y都趋于0

令u=xy,则原式=lim(√(u+1)-1)/u=lim((u+1)-1)/[u·(√(u+1)+1)]=limu/[u·(√(u+1)+1)]=lim1/(√(u+1)+1)=1/2

求极限lim(x→1 y→2) (x²+y²)/xy

这个式子在(1,2)连续所以极限=(1+4)/2=5/2再问:可以写写计算的过程吗。再答:就是这个啊因为连续,所以可以直接代入

lim (x,y)->(0,0) xy/[根号下(xy+1)]-1的值为

x^2+(y^2)/2=1,x^2+[(1/√2)y]^2=1,设x=cosA,y=√2sinA,因x>0,y>0,不妨设0<A<π/2,x√(1+y^2)=cosA√[1+2(sinA)^2]=√{

lim(x,y)→(0,1) (1+xy)^1/x 求大神帮忙,谢谢~

原式=lim(x,y)→(0,1)(1+xy)^[1/yx·y]=[lim(x,y)→(0,1)(1+xy)^1/yx]^[lim(x,y)->(0,1)y]=e^1=e

求极限:1)x趋于0,y趋于1时,lim(1-xy)/(x^2+y^2)

第一题极限等于1第二题极限为1/2第三题为1第一题方法x->0y->1直接代入即可第二题方法1-cos根号(x^2+y^2)等价于(x^2+y^2)/2所以除以x^2+y^2后等于1/2和x,y没关系

用定义法证明二重极限lim(√(xy+1)-1)/xy=0

分子分母同乘以√(xy+1)+1,则分子变为:xy分母变为:(x+y)[√(xy+1)+1]其中:[√(xy+1)+1]的极限存在下面只需证明limxy/(x+y)极限不存在即可.取两条特殊路线:1、

求二元函数极限:(x,y)趋近于(2,-1/2)时lim(2+xy)^(1/(y+xy^2))

取对数,得ln(2+xy)/(y+xy^2).(x,y)→(2,-1/2),所以xy→-1,所以ln(2+xy)是无穷小,等价于1+xy.所以,limln(2+xy)/(y+xy^2)=lim(1+x