(3)如图,△ABC中,AB=BC,D是AB延长线上的点,说明AD>DC的理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:02:30
(3)如图,△ABC中,AB=BC,D是AB延长线上的点,说明AD>DC的理由.
已知如图,在△ABC和△DEF中,AB=DE,

证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)

如图,已知△ABC中,AB=AC,BE=CF.求证:DE=DF

作FG//AB交BC延长线于G则∠G=∠B而由AB=AC知:∠B=∠ACB而∠ACB=∠GCF所以,∠G=∠GCF,所以,CF=GF而,CF=BE所以,BE=GF∠G=∠B∠BDE=∠GDF所以,△B

已知,如图,在△ABC中,AB

∵AC=8,C△ABE=14,    ∴AB+AE+BE=14    ∵DE垂直平分BC  &nbs

如图,已知△ABC中,AB=5,BC=3,AC=4,PQ⊥AB,P在AC边上,Q在AB边上.

⑴设AP=x,则3×4/4=(3x/4)×x/2,得到x=2√2.当AP为2√2时,S四边形BCPQ=S⊿APQ.⑵AD(高)=3×4/5=2.4,(2.4-3x/4)/2.4=(3x/4)/5,x=

如图,在△ABC中,AB=AC,BD为中线,试说明3AB>2BD

因为AB=AC又因为BD为中线所以AD=0.5AB所以AD+AB=1.5AB根据三角形三边定理1.5AB大于BD不等式两边同时乘以2,就变为3AB大于2BD抱歉,因为打字不熟练,你得将所有的因为所以转

如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,

(1)∵AB的垂直平分线DE交AB、AC于E、D,∴DA=DB,∵△BCD的周长为8,即BC+CD+DB=8,∴BC+CD+DA=BC+CA=8,∵AC=5,∴BC=3;(2)∵DA=DB,∴∠A=∠

如图,在等腰三角形ABC 中,AB=AC,

腰长:10底:1还不知道,百度HiM我

如图,在Rt△ABC中,∠ACB=90度,AC=3,AB=5

∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R

如图,三角形ABC中,AB=AC,

∵AB=AC∴△ABC为等腰三角形,故∠B=∠C=(180°-100°)/2=40°在直角△ADC中∠CAD=180°-90°-∠C=90°-40°=50度°

如图在等腰三角形abc中AB=AC

∵AB=ACAD=BD∴∠B=∠C=∠BAD∵△ADE是等边三角形∴∠DAC=60°∵∠B+∠BAD+∠DAC+∠C=180°∴3∠C+60°=180°∠C=40°∵∠DEC=180°-60°=120

如图,在三角形ABC中AB=AC

解1:因AB是员直径,所以角ADB=90,即AD垂直于BC.因AB=AC,且AD垂直BC,AO=DO,所以角CAD=角BAD=角ADO.因AC垂直EF,因此角CAD+角ADE=角AED=90又因CAD

如图,已知△ABC中,AB=CD,AC=BD,BE=CE,求证:

证明:AC=BDBE=CEAE=DE所以三角形ABE=三角形CDE(边边边)角A=角B

如图△ABC中 AB=BC BE

∵AD⊥BC,∠BAD=45°,∴⊿ADB是等腰直角三角形,AD=BD;∵AB=BC,BE⊥AC,∴AE=EC,AC=2AE,∵Rt⊿EBC与Rt⊿DAC有公用锐角∠C,∴∠EBC=∠DAC,可证Rt

...如图 在Rt△abc中,角A=90度,AB=3cm,AC=4cm

令EF与AC交于点Q;DF与BC交于点M,与AC交于点N由转动得CP=BP=3,PF=CF=2,直角三角形CPQ中PQ:CP=3:4,所以PQ=1.5,FQ=0.5S=三角形PFM-FQN=CPQ-F

如图,△ABC中,AB=AC,D是AB上一点,且BC=5,CD=4,BD=3,求△ABC的面积.

∵BC=5,CD=4,BD=3∴勾股定理:△BCD是直角三角形即CD⊥AB,做AE⊥BC于E,∵AB=AC,那么AE是中线∴BE=1/2BC=5/2∵∠B=∠B,∠AEB=∠CDB=90°∴△ABE∽

如图.在△ABC中,AB=AC,

10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X

如图,在三角形ABC中,AB=AC,

因为AB=AC,角A=36度所以角ABC=角ACB=72度因为CD平分角ACB所以角BCD=角DCA=36度因为角A=36度所以角BCD=角A因为角DBC=角ABC所以三角形CDB相似于三角形ABC所

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC