三个平行的"无限大"均匀带电平面,电荷面密度都是+σ
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:05:06
E不是只与Q有关,1:U=Ed(d为两板间距离)2:电容有关的公式你应该知道吧,C=S/4πkd,C=Q/U,两式去C得,U/d=4πkQ/S=E,(由此得,E与Q,S有关)A选项:S闭合,U不变,d
无限大的均匀带电平板A周围的电场强度是E=σ/ε(运用高斯定理可得).而B板和A板将在静电引力作用下产生静电感应,即远离A板的那面电荷为零,与A板对应的那面和A板上一样,但方向相反!想一下电容器就能明
首先要理解电通量的定义,通过某一曲面的电通量=场强和面积元点积的遍及被考虑曲面的面积分,也即=垂直于某一面积元的场强法向分量与面积元乘积的积分.清楚了定义后,针对题目画个图.任意划出一条电场线,中间有
其实既然你都作出了第一问,第二问应该不难啊,你想想,单独一个平面产生的电场是个什么样的电场?如果是一个带正电电荷的话,它的电场是不是就是往外发散的球,负电荷则是向内聚拢的.你再想想平行板电容在不是板边
磁感线显然平行于导电平面,且两侧的磁感线的方向相反.取一长L/2的直线段,平行于导电平面,再取上述直线段关于平面的对称映像线段,再取两条垂直于平面的线段将前述两条平行线段连接起来.对这四条线段构成的矩
可证明无限大均匀带电板产生的为匀强电场,两块板的和场强就为根号2V/m,d=u/E=(根号2)/2m这是某届的一道复赛题,可以去查查看,不难的.
每一个“无限大”均匀带电平面,在空间产生的电场强度为σ/(2ε0),三个平面把空间分成四部分,根据场强叠加原理,四部分空间的场强从左到右分别是:3σ/(2ε0),方向向左;σ/(2ε0),方向向左;σ
电荷密度没打出来呢?比如分别为+σ1和+σ2.设电荷面密度为+σ1的为板A,电荷面密度为+σ2的为板B.A板产生的场强大小为E1,根据其对称性,对板A取一圆柱形高斯面,高斯面截面积为s根据高斯定理∮E
初二看平行空间啊厉害~在三维的尺度看来,宇宙确实是无穷大的.在四维的尺度上,也许我们只是一张膜,但那也是在四维的一个方向上是膜而已就好象平面在三维的某一个方向厚度无穷小但是我们认为宇宙是一直膨胀的,并
电板不是导体,内部的电荷不能自由流动到表面.再问:电板为什么不是导体?怎样才是电板,怎样才是导体,怎样区别电板和导体?再答:电板是不是导体,题目应当明确,不明确的,按照默认的惯例处理,有的题目故意不明
我能不能把电荷面密度用σ来表示,a看起来不太舒服.设电荷面密度为σ的为板A,电荷面密度为2σ的为板B.设板A在两板间产生的场强大小为E1,根据其对称性,其在两板外产生的场强亦为E1,方向相反.对板A取
用高斯定理∮EdS=q/ε,可以设计一个这样的则得2ES=Sσ/εE=σ/2ε,这是平面的场强公式,然后空间的就只需要叠加一下就行了,加加减减什么的再问:能给下具体步骤吗再答:我去这还不具体啊。平行板
由对称可知,电场线是垂直于带电平面的,且是均匀变化的,用高斯定理求,具体怎么求,我也忘记了!
根据高斯定理解E=d/e0E为射出高斯体的“净”电场强度,d为面电荷密度,e0为真空介电常数.当高斯体包括两个板时,射出高斯体的“净”电场强度为E0*2/3,所以E0*2/3=(dA+dB)/e0.当
1、首先,x>0时,对E积分所得的电势是负的.2、dl的方向是有l的方向决定的,因为它是l向量的微量.3、当x向量为x正方向时,dx就为正的,x向量为负方向时,dx就为负的.所以,跟x有关.还因为x有
对.根据高斯定理E*2S=入*S/真空介质常量E=入/2*真空介质常量与距离无关的(仅限于无限大平面)相信我.希望能帮助你~!
F=Eq=σ/(2*episilon)*σ*S,注意要用单板场强再问:其实我知道答案是这个,就是为什么用单板场强啊?再答:这个太简单了,这块板为什么会受力,是因为它放入了对方的场中,自己的场对自己是没
两板之间用大的减小的,因为两板对这里场强方向相反.两板的左边和右边都是相加两板各自对其场强相加,原因是场强方向相同.无限大带点平板场强与距离无关.各处均为σ除以2e.{我晕,那个k=1/(4π*e.)
无限大俩平板间找不到边界,没有外侧一说.场强跟带电量以及两板距离有关.再问:。。。。。。。还没有外侧了又不是二维的是三维的再答:额,外侧在无穷远处为零,在无穷远处看平板看做点,成平方减小,在较近距离看
A区域是+σ2外边区域,B是两版中间,C是-σ3外的话,因为两板无限大,所以两板电荷均匀分布,分别产生匀强电场E1;E2