1已知关于x的方程(m-根号3)x^m的平方-1-x=8.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:55:39
分子分母同乘(根号M+根号N)化简得原式等于M+N+根号M*根号N再计算(根号M+根号N)^2=m+n+2根号MN=9所以M+N=7所以原式等于8
1、证明:当m=-2时,原方程即2√5x=5显然有实数根当m不等于-2时,判别式=5m^2-4(m+2)(m-3)=m^2+4m+20=(m+20^2+16>0则必有两个实数根得证!2、设两根为x1,
(1)证明:方程判别式δ=(-根号(5))^2-4(m+2)(m-3)=m^2+4m+24=(m+2)^2+20恒大于0,故方程必有实数根.设两个实数根为a,b.由韦达定理:a+b=根号(5)m/(m
x=(√3+1)/4±√{(√3+1)/4]^2-m/2}由于sinθ^2+cosθ^2=11=2((√3+1)/4)^2+2{(√3+1)/4]^2-m/2}=4[(√3+1)/4]^2-mm=4[
2x²-(√3+1)x+m=0因为sina,cosa是此方程的两根所以sina+cosa=(√3+1)/2sina*cosa=m/2sin²a+cos²a=(sina+c
下面用a代替θ由韦达定理sina+cosa=(√3+1)/2sinacosa=m/2(sina)^2+(cosa)^2=1所以(sina+cosa)^2-2sincosa=1(2+√3)/2-m=1m
关于x的方程2x^2-(根号3+1)x+m=0的两根为sinθ和cosθ,∴sinθ+cosθ=(√3+1)/2,tanθ*sinθ/(tanθ-1)+cosθ/(1-tanθ)=[(sinθ)^2-
我晕,今天成答疑了用a代表角吧利用韦达定理sina+cosa=√3/2+1/2①sina*cosa=m/2②①平方则1+2sinacosa=1+√3/2∴sina*cosa=√3/4即m=√3/2方程
关于x的方程2x^2-(根号3+1)x+m=0的两根为sinθ,cosθ则sinθ+cosθ=(√3+1)/2…………(1)sinθcosθ=m/2………………(2)(1)tanθsinθ/tanθ-
sina+cosa=(√3+1)/2sinacosa=m/2平方得,1+2sinacosa=(4+2√3)/4∴1+m=(2+√3)/2,∴m=√3/2∴sinacosa=√3/4∴(1+sina+c
2x平方-(根号3+1)x+m=0的两根为sina和cosa,由韦达定理得:sina+cosa=(√3+1)/2sinacosa=m/2sin²a+cos²a=1(sina+cos
由韦达定理sina+cosa=(√3+1)/2sinacosa=m/2(sina)^2+(cosa)^2=1所以(sina+cosa)^2-2sincosa=1(2+√3)/2-m=1m=√3/22x
√m+√n=3√mn=1由立方差公式有(m√m-n√n)/(√m-√n)=m+√mn+n=(√m+√n)^2-√mn=9-1=8
∵sinQ+cosQ=(√3+1)/2sibQcosQ=m/2∴1+2xm/2=(√3+2)/2∴m=√3/2原式=(sin²Q-cos²Q)/(sinQ+COSQ)=sinQ-c
它是一元一次方程.则有以下情况:(1)m^2-1=0m-1=/=0解得:m=-1(2)m^2-1=1m=(+/-)根号2检验,当m=(+/-)根号2时,一次项的系数不为0所以M=-1或(+/-)根号2
因为根号(x+1)有意义,那么根号x+1大于等于0;对于方程:根号(x+1)+m=2,变换后得到m=2-根号(x+1)实数范围内,在根号(x+1)大于等于0的情况下,可知m小于等于2要使方程无实数解,
由根与系数关系,得sinA+cosA=(根号3+1)/2,(1)sinA*cosA=m/2,(2)又(sinA)^2+(cosA)^2=1,即(sinA+cosA)^2-2sinA*cosA=1,(1
当M=0,时是一元一次方程,有实数根.当m≠0,是一元二次方程,Δ=5m²-4(m+2)(m-3)=m²+4m+24=m²+4m+4+20=(m+2)²+20>
利用韦达定理得:sinA+cosA=(√3+1)/2sinA^2/(sinA-cosA)+cosA/(1-tanA)=sin²A/(sinA-cosA)+cos²A/(cosA-s