(4-3z) 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:23:53
(4-3z) 1
复数的几道题目已知复数Z满足Z+丨Z丨=4-2i,求z _已知复数z满足(1+2i)Z=4+3i,求z已知丨z1丨=1,

1、z=a+bi,a,b是实数则|z|=√(a²+b²)所以a+√(a²+b²)+bi=4-2i所以a+√(a²+b²)=4,b=-2a+√

已知复数z满足z*z拔=4,且|z+1+√3i|=4,求复数z

z=1+√3i 代数法如下图: 几何法:由复数的几何意义可知,z表示的点与点(-1,-√3)关于原点对称则,z表示的点为(1,√3)所以,z=1+√3i

已知复数Z满足:|Z|=1+3i-Z,求[(1+i)^2(3+4i)^2]/2Z

|Z|=1+3i-Z设z=x+yi|z|=√(x^2+y^2)|Z|=1+3i-Z,√(x^2+y^2)=(1-x)+(3-y)i∴√(x^2+y^2)=1-x,且3-y=0∴y=3√(x^2+9)=

复数z=[(1+i)^3(a+bi)]/(1-i), |z|=4,z对应得点在第一象限,若复数0,z,zˊ对应的点是正三

再问:BOCΪʲô����60�ȣ������������Dz�����60����再答:�ǵ�,���������õ���һ��,���һ�������30��.再问:额。。。你写了个boc=30度,

已知复数z满足z*z共轭=4,且|z+1+根号3i|=4

(1)设z=a+b*i,则z共轭=a-b*i由已知:z*z共轭=(a+b*i)(a-b*i)=a^2+b^2=4(1)|a+b*i+1+根号3i|=|(a+1)+(根号3+b)*i|=4即(a+1)^

设复数z满足|z|=1,且(3+4i)z是纯虚数,则杠z=_.

设z=a+bi(3+4i)z=(3X-4Y)+(4X+3Y)iZ是纯虚数,3X-4Y=0|z|=1X=4/5Y=3/5或X=-4/5Y=-3/5Z上面一横=4/5-3/5i或-4/5+3/5i

已知复数z满足z*z-3i*z=1+3i,求z

z*z-3i*z=1+3i化简(z+1)(z-1-3i)=0所以z=-1或z=1+3i

复数Z满足1/Z=Z/(3Z-10)则,|Z|=

1/Z=Z/(3Z-10)即:z²=3z-10z²-3z+10=0∴z=(3±i*√31)/2|Z|=√10

若z*z巴=4,则|1+3i+z|的取值范围

复数z在复平面上的轨迹为圆心在原点,半径为2的圆.所求的取值范围即z到点(-1,-3)的距离的范围,可知点(-1,-3)在圆外,所以最大值为2+根号10,最小值为根号10-2.

已知模(z+1)/z=2 arg[(z+1)/z]=π/3 求z.

则由题意得,(z+1)/z=2(cosπ/3+sinπ/3*i),设z=a+bi(a+bi+1)/a+bi=2(cosπ/3+sinπ/3*i)a+1+bi=(a-sqrt(3))+(sqrt(3)a

计算积分∮|z|=1 (3z+5)/(z^2+2z+4) dz的值,

z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满

已知复数z满足z=4/z,且|z-√3|=1,求复数z

依题,由复数z=x+yi(x,y∈R),满足│z│=1,得:x^2+y^2=1另外:│z-1-i│^2=(x-1)^2+(y-1)^2=-2(x+y)+3(注:将x^2+y^2=1带入)而:1/2=(

设复数Z满足|z|=1,且(3+4i)Z是纯虚数,求Z

(3+4i)*(3-4i)i=25i(3-4i)i=3i+4|(3i+4)/5|=1z=(3i+4)/5

若复数Z满足/Z/=1,则/Z-3-4i/的最小值为?

我说说思路,数形结合复数的模=1,说明了在复平面上,Z位于半径=1的圆周上./Z-3-4i/表示的是点Z到3+4i的距离,那么/Z-3-4i/的最小值就是圆上距离3+4i最近的点到3+4i的距离.连接

已知模[(z+1)/z]=2 arg[(z+1)/z]=π/3 求z.

因为模[(z+1)/z]=2arg[(z+1)/z]=π/3所以(z+1)/z=2(cosπ/3+isinπ/3)1+1/z=1+√3i1/z=√3iz=1/[√3i]=-√3/3i

复数Z满足|z+3-4i|=2,求 |Z-1|的取值范围

注意|z+3-4i|=2表示的是z+3-4i的模等于2它不是绝对值解题如下:设z=a+bi则|z+3-4i|=|a+3+(b-4)i|=根号下(a+3)的平方加上(b-4)的平方所以(a+3)的平方加

已知复数z=1-ai |z|/z=-3+4i/5 a=?

设z=x+yi,则x²+y²=25(1),又(3+4i)(x+yi)=3x-4y+(3y+4x)i为纯虚数,所以3x-4y=0(2)4x+3y≠0(3)由(1)(2),解得x=4,