三棱锥pac垂直abc求证pa垂直hcb
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:56:21
(1)过点P向面ABC做垂涎PG垂直于点G∵平面PAB垂直与平面ABC∴PG在平面PAB内又∵平面PAC垂直与平面ABC∴PG在平面PAC内两平面只能有一条交线所以G点与A点重合即PA垂直与平面ABC
pa垂直平面abc,pa垂直bc,又pc垂直bc所以bc垂直平面pac,平面pbc为过bc的一个平面所以平面pbc垂直平面pac
取AC中点D,连结PD,DB.因为PA=PC,所以三角形PAC为等腰三角形,D为AC中点,所以PD⊥AC.又因面PAC⊥面ACB,面PAC∩面ACB=ACPD在面PAC内,PD⊥AC所以PD⊥面ACB
由二面角的平面角定义又PA|ABC得PA|AB,PA|AC.则角BAC为B-PA-C的平面角,又PAB|PAC,故BAC直角.
第一个问题:∵PA⊥平面ABC,∴BC⊥PA.∵△ABC是直角三角形,且AB=BC,∴BC⊥AB.由BC⊥PA、BC⊥Ab、AB∩PA=A,得:BC⊥平面PAB,∴BC⊥PB.第二个问题:PB与平面P
证明:∵PA=AB,∴AD⊥PB,∵PA⊥平面ABC∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB∴BC⊥平面AD∴AD⊥平面PBC,∴AD⊥PC
1.连接po因为o是外心所以ao=bo=co取AB边中点d连接odpd因为oa=ob所以oa垂直ab同理pd垂直ab所以ab垂直平面pdo所以po垂直于ab2同理po垂直bc因为abbc交于b点所以p
图片版答案:(写了一整个下午呀,一定要选俺的)
证明:在平面PAB内取一点S,使SA⊥AB,因为面PAB⊥面ABC,交线为AB,∴SA⊥面ABC,假设SA与PA不是一条直线,即S不在PA上,即S不在面PAC内,则同理知,在平面PAB内,有异于PA的
PA⊥平面ABC,BC∈平面ABC,PA⊥BC,BC⊥AC(已知),AC∩AP=A,∴BC⊥平面PAC
证明:∵PA⊥面ABC,BC⊂面ABC,∴PA⊥BC∵AC⊥BC,PA∩AC=A∴BC⊥面PAC∵BC⊂面PBC∴面PBC⊥面PAC.
∵PAB垂直于平面ABC,平面PAC垂直于平面ABC,平面PAB并上平面PAC=PA,∴PA垂直面ABC(垂直于同一平面的两平面的交线垂直于那个平面,这是个公理啊,老师上课应该有讲到过的吧!)
设D,E为AC,AB中点,连接PE,PD,DE因为PA=PB=PC所以PD垂直于AC,PE垂直于AB又因为侧面PAC与底面ABC交于AC所以PD垂直于底面ABC因为AB属于底面ABC所以AB垂直于PD
(1)做AC中点O∵PC=PA∴PO⊥AC∵侧面PAC与面ABC垂直∴PO⊥BO,即∠POC=POB∵PB=PC,∴⊿POC≌⊿POB,即OC=OA=OB∴⊿ABC是等腰直角三角形,得证(2)即求∠P
作PD,PE,PF分别垂直AB,BC,AC于D,E,F,连接CD,AE,BF,;由于PAPBPC两两垂直,故可知PA⊥平面PBC;而PE⊥BC,由三垂线定理得AE⊥BC;同理,BF⊥AC;CD⊥AB;
作PO⊥平面ABC于O,连AO,BO,CO.∵PA⊥BC,∴AO⊥BC.同理,BO⊥CA.∴O是△ABC的垂心,∴CO⊥AB,∴PC⊥AB.
取AC中点D,连结PD,DB.因为PA=PC,所以三角形PAC为等腰三角形,D为AC中点,所以PD⊥AC.又因面PAC⊥面ACB,面PAC∩面ACB=ACPD在面PAC内,PD⊥AC所以PD⊥面ACB
由于PA⊥面ABC则PA⊥BC而BC⊥AB则BC⊥面PAB即:BC⊥AD又有AP⊥AB且PA=AB则△PAB为等腰直角三角形,AD⊥PB加上前面AD⊥BC即:AD⊥面PBCCD在面PBC上即:AD⊥C
PA垂直平面ABC,那么PA垂直BCAB垂直BC,且AB是平面PAB的线所以BC垂直平面PABBC是面PBC的线所以平面PBC垂直平面PAB
设D,E为AC,AB中点,连接PE,PD,DE因为PA=PB=PC所以PD垂直于AC,PE垂直于AB又因为侧面PAC与底面ABC交于AC所以PD垂直于底面ABC因为AB属于底面ABC所以AB垂直于PD