三棱锥pA垂直平面ABC.AB=BC,PA=ACE为pc动点当BE垂直pc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:59:32
三棱锥pA垂直平面ABC.AB=BC,PA=ACE为pc动点当BE垂直pc
在三棱锥P-ABC中,PA垂直于平面ABC,平面PAB垂直于平面PBC,求证:BC垂直于AB

过A作AD⊥PB交PB于D.∵面PAB⊥面PBC,而PB是面PAB和面PBC的交线,又AD⊥PB,∴AD⊥面PBC,得:AD⊥BC.∵PA⊥面ABC,∴PA⊥BC.∵AD⊥BC,PA⊥BC,而PA∩A

如图,三棱锥P-ABC中,PA垂直于平面ABC,平面PAC垂直于平面PBC,则三角形

由二面角的平面角定义又PA|ABC得PA|AB,PA|AC.则角BAC为B-PA-C的平面角,又PAB|PAC,故BAC直角.

三棱锥P-ABC中底面ABC为直角三角形AB=BC,PA=2AB,PA垂直面ABC,求BC垂直PB,PB与平面PAC角的

第一个问题:∵PA⊥平面ABC,∴BC⊥PA.∵△ABC是直角三角形,且AB=BC,∴BC⊥AB.由BC⊥PA、BC⊥Ab、AB∩PA=A,得:BC⊥平面PAB,∴BC⊥PB.第二个问题:PB与平面P

三棱锥P-ABC中,PA=PB=PC=1,AC=根号二,且AB=BC,平面PAC垂直平面ABC,则此三棱锥的体积为?

取AC中点M,连接PM,BMPA=PC,PM⊥ACAB=BC,BM⊥AC∠PMB是二面角P-AC-B的平面角,平面PAC垂直平面ABC,所以∠PMB=90°PB=1,AC=√2,PM=√2/2,BM=

在三棱锥P—ABC中,PA垂直平面ABC,AB垂直BC,PA=AB,D为PB的中点,求证AD垂直PC

证明:∵PA=AB,∴AD⊥PB,∵PA⊥平面ABC∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB∴BC⊥平面AD∴AD⊥平面PBC,∴AD⊥PC

立体几何证明1 三棱锥 P-ABC中 PA垂直平面ABC 底面直角三角形ABC的斜边是AB AE垂直PB于E AF垂直P

∵PA⊥平面ABC,∴PA⊥BC,〈BCA=90度,即BC⊥AC,∴BC⊥平面PAC,∵AF在平面PAC内,∴BC⊥AF,∵AF⊥PC,(已知),∴AF⊥平面PBC,∵PB在平面PBC内,∴AF⊥PB

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直AC,D,E,F分别是棱PA,PB,PC的中点,连接DE,DF,EF,

三棱锥的高一定,底面是斜边为定长的直角三角形.设两直角边为,a,b.满足条件a^2+b^2=4.当ab最大时,底面积最大..由于有关系式:a

在三棱锥p abc中,PA垂直于平面ABC,AC垂直BC.求证BC垂直平面PAC

PA⊥平面ABC,BC∈平面ABC,PA⊥BC,BC⊥AC(已知),AC∩AP=A,∴BC⊥平面PAC

已知三棱锥P-ABC中,PA垂直于平面ABC,PB垂直于AC,PA=AC=1/2AB,N为AB上一点,AB=4AN,

不知道你的基础是什么,我就假设你学过解析几何了,看不懂的话再问我.易见AP垂直于AB,于是我们可以以A为原点,AP(射线)为z轴,AB(射线)为x轴,AP(线段)为单位长度,建立空间直角坐标系.由题设

在三棱锥P-ABC中,底面ABC为直角三角形,AB=BC,PA=2AB,PA⊥平面ABC

第一个问题:∵PA⊥平面ABC,∴BC⊥PA.∵△ABC是直角三角形,且AB=BC,∴BC⊥AB.由BC⊥PA、BC⊥Ab、AB∩PA=A,得:BC⊥平面PAB,∴BC⊥PB.第二个问题:过B作BE⊥

在三棱锥P-ABC中,底面ABC为直角三角形,AB=BC,PA⊥平面ABC

由AB=BC,ABC为RT三角形,所以AB⊥BC,又PA⊥面ABC所以pB⊥BC(三垂线定理),pA=4=2AB,所以AB=2,Ac=2√2,pB=2√5,pC=2√6,Vp-BCD=VD-PBC,即

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直BC,PA=AB,D为PB的中点,求证:AD垂直CD

由于PA⊥面ABC则PA⊥BC而BC⊥AB则BC⊥面PAB即:BC⊥AD又有AP⊥AB且PA=AB则△PAB为等腰直角三角形,AD⊥PB加上前面AD⊥BC即:AD⊥面PBCCD在面PBC上即:AD⊥C

在三棱锥P-ABC中,PA垂直平面ABC,AB垂直BC.求证平面PBC垂直平面PAB

PA垂直平面ABC,那么PA垂直BCAB垂直BC,且AB是平面PAB的线所以BC垂直平面PABBC是面PBC的线所以平面PBC垂直平面PAB

如图,在三棱锥P-ABC中,PA垂直平面ABC,BC垂直PB

取PC的中点O,连结OA、OB∵∠PAC=90°,∴OA=OP=OC∵∠CBP=90°,∴OB=OP=OC∴OA=OP=OB=OC∴P、A、B、C在同一个球面上

在三棱锥p-abc中,底面abc为直角三角形ab=bc,pa垂直平面abc若d为ac的中点,且pa=2ab=4,求三棱锥

先求A到PBC的距离,D到PBC的距离等于它的一半.V=(1/3)*(1/2)*2*2*4=8/3三角形PBC的面积的三边为2根5、2根5、2根2P到BC上的高=根号(20-2)=3根2S=(1/2)

已知PA垂直平面ABC,AB垂直BC,求证,平面PBC垂直平面PAB

已知PA垂直平面ABC,所以PA垂直AB又因为AB垂直BC所以AB垂直平面PBC所以平面PBC垂直平面PAB