三角形abc三内角ABC所对边分别为ABC若abc成等比数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:52:29
三角形abc三内角ABC所对边分别为ABC若abc成等比数列
已知abc分别时三角形ABC的三个内角ABC所对的边若三角形面积为二分之根号三c=根号三,且ABC成等差数列

因为ABC成等差数列,所以∠A+∠B+∠C=3∠B=180,所以∠B=60,S=1/2*a*c*sinB=1/2*a*根号3=2分跟三,所以a=1,所以a边的高为S*2/a=跟3=c,所以c是直角边,

abc为三角形ABC三个内角所对的边,且asinAsinB+bcos方A=根号3a.当cosC=三分之根号三,求cos(

根据正弦定理a/sinA=b/sinB=c/sinC,原式可变形为:bsin2A+bcos2A=跟号3a,即b=根号3a.将上面的结果带入余弦定理“cosC=(a^2+b^2-c^2)/(2·a·b)

在三角形ABC,三内角A,B,C所对的边分别为a,b,c,若B=60度,c=(根号3-1)a.

A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCa=(3^(1/2)-1)csinA=(3^(1/2)-1)sinC(3^(1/2)+1)sinA=2sin(120°-A)=3^

已知三角形ABC的内角ABC所对的边分别为abc 且a=2cosB=五分之三若b=4求sinA的值若三角形ABC的面积=

1、a=2,cosB=3/5,sinB=4/5,b/sinB=a/sinA,4/(4/5))=2/sinA,sinA=2/5.2、S△ABC=acsinB/2=2*c*4/5/2=4,c=5,b^2=

在三角形ABC中,三内角ABC的对边分别是abc,且ABC成等差数列,求三角形ABC为等边三角形.

ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a

在三角形ABC中,a,b,c分别表示三内角A、B、C所对的边的长,且lgsinA,lgsinB,lgsinC成等差数列;

∵lgsinA,lgsinB,lgsinC成等差数列,∴2lgsinB=lgsinA+lgsinC,∴sin2B=sinA•sinC.直线xsin2A+ysinA-a=0的斜率为-sinA,xsin2

在三角形abc内角ABC的对边abc且a

由a+b+c=20(1)由S=(1/2)acsinB=10√3,(1/2)ac×(√3/2)=10√3,∴ac=40(2)由cosB=(a²+c²-b²)/2ac=1/2

三角形ABC中,三个内角ABC所对的边分别为abc若B=60度,a=(根号3-1)c

1.A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCa=(3^(1/2)-1)csinA=(3^(1/2)-1)sinC(3^(1/2)+1)sinA=2sin(120°-A)=

三角形ABC的面积是30,内角ABC所对的边为abc ,cosA=13分12,求向量AB乘向量AC

(1)由已知得,sinA=5/13,又1/2bcsinA=30,所以bc=156.所以向量AB*向量AC=bccosA=156*12/13=144.

在ABC中,三内角ABC所对的边分别是abc

/sinB=c/sinCsinBsinB=sin2C=2sinCcosC给你个提示!

已知三角形ABC的三个内角A B C 所对的边为abc,A是锐角,√3b=2a× sinB .求角A的度数 若a=7,三

√3b=2a·sinB两边同除以b,得到√3=2a·(sinB/b)√3=2a·(sinA/a)正弦定理sinA=1/2*√3A是锐角所以A=60°三角形面积公式S=1/2bcsinA10√3=1/2

三角形ABC中,三个内角ABC所对的边分别为abc若B=60度,c=(根号3-1)a

解∵∠B=60°∴A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCc=(√3-1)asinC=(√3-1)sinA(√3+1)sinC=2sin(120°-C)=√3cosC+s

在三角形ABC中,内角ABC所对的边是abc.若a²-b²=根号三bc sinc=2倍根号三乘sin

自己做的 答案应该是30°.莫怪字丑啊,高考完到现在没动过笔 都快不会写字了

设三角形ABC的三内角ABC所对边的边长分别为a,b,c,平面向量m=(cosA,cosC),向量n=(c,a),向量p

cosA*(c-2b)+cosC*a=0cosA(sinC-2sinB)+cosCsinA=0cosAsinC+cosCsinA-2cosAsinB=0sin(A+C)=2cosAsinBsinB=2

1.已知a,b,c分别为三角形ABC三内角A,B,C所对的边,2(sinA-sinB),sinA-sinC,2(sinB

(sinA-sinC)²=2(sinA-sinB)*2(sinB-sinC)两边同×4R²,R为外接圆半径(a-c)²=4(a-b)(b-c)a²-2ac+c&

在三角形ABC中,三内角A,B,C所对的边分别为a,b,c,若满足a=(√3-1)c

由正弦定理得,tanB/tanC=(2a-c)/c=(2sinA-sibC)/sinC,在化切为弦,即sinB*cosC=2sinA*cosB-sinC*cosB,所以,移项利用正弦的和角公式得sin

在三角形ABC中,三内角A,B,C所对的边分别为a,b,c,且(2b-c)cosA=acosC.

(1)2bcosA=ccosA+acosC=b所以cosA=1/2A=π/3(2)B+C=π-π/3=2π/3所以0

已知三角形的三个内角 ABC成等差数列,而ABC三内角的对边abc成等比数列,证明三角形ABC为正三角形.

由等差数列有2B=A+C,由等比可得b^2=ac,正弦定理得出Sin^2(B)=SinA*SinC,又因为Sin^2(B)=(1-Cos2B)/2,代入,则1-Cos2B=2SinA*SinC,然后第

三角形abc中,内角A,B,C对边的对边分别是abc,已知abc成等比数列,且cosB等于四分之三

(1)由已知a,b,c等比,所以b²=ac.由余弦定理:b²=a²+c²-2ac*cosB,ac=a²+c²-2ac(3/4),即2a