三角形ABC中,MN是斜边上的两点,且MAN=45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:10:15
三角形ABC中,MN是斜边上的两点,且MAN=45度
在RT三角形ABC中,CD是斜边AB上的中线MN是中位线,请猜想CD与MN有怎样的数量关系

CD=MN因为直角三角形斜边中线等于斜边一半,中位线也等于对边的一半

已知,在Rt三角形ABC中,EF是中位线,CD是斜边AB上的中线.求证;EF=DC

不知道你学过定理没,直角三角形斜边中线等于斜边一半,这是常识,如果要证明,你就作一矩形,它的对角线相等,又相互平分,所以,以其中三个顶点为直角三角形的斜边就是对角线,那么中线就是另一条对角线的一半,所

在Rt△ABC中,CD是斜边AB上的中线,MN是△ABC的中位线,求证:CD=MN

易证得CD=2分之一AB且MN=2分之一AB所以CD=MN

三角形ABC中,角BAC=90度,MN是三角形ABC的中位线,AD是BC上的中线.

用到两个定理1.直角三角形斜边中线等于斜边一半2.中位线平行边且为边长的一半∵△ABC为RT三角形又∵AD是BC上的中线∴AD=BC/2∵MN是中位线∴MN=BC/2∴AD=MN

在三角形ABC中,已知角ACB是直角,CD是斜边AB上的高,求证:三角形ACD∽三角形CBD∽三角形ABC

oh!这个东西很简单啊,得出的结论是个著名的定律,叫做射影定理,你直接搜一下射影定理的证明试试看!

三角形 abc中 ,mn是中位线,m在ab上n在bc上,ad是bc边上的中线,找出ad与mn的关系,并说明理由

MN平分AD因MN是三角形ABC的中位线所以:MN平行BC假设AD,MN交于E则:ME是三角形ABD的中位线所以:E是AD的中点也就是:MN平分AD

如图,Rt三角形ABC中,CD是斜边上的高,三角形ACD和三角形CBD都和三角形ABC相似吗?证明

在ΔABC与ΔACD中,∠ACB=∠ADC=90°,∠A=∠A,∴ΔABC∽ΔACD,∴AC/AB=AD/AC,∴AC^2=AD*AB.在ΔABC与ΔCBD中,∠ACB=∠CDB=90°,∠B=∠B,

如图,Rt三角形ABC中,CD是斜边上的高,求证CD^=AD*BD

∵△ABC为Rt三角形∴角C=90°又∵CD是斜边上的高∴角CDA=角CDB=90°=角C∵角A=角A角B=角B∴△ACD∽△ABC∽△CDB∴AD/CD=CD/BD∴CD^2=AD*BD

Rt三角形ABC中,CD是斜边上的高,三角形ACE和三角形BCF都是正三角形试说明AC:BC=AD:CD 三角形EAD

角BAC等于角CAD,故直角三角形ACB相似于直角三角形ADC,故AC:BC=AD:CD正三角形,所以AE=AC,CF=CB,故AE:CF=AC:CB=AD:CD且由于角CAD=角DCB,角EAC=角

在Rt三角形ABC中,CD是斜边上的高,如果AD:BD=1:2,那么三角形ACD与三角形BCD的周长之比为

易证△ACD∽△BCD(射影定理)CD×CD=AD×BD=2CD=「2两三角形周长之比=边之比=1∶「2=「2∶2

已知,在三角形ABC中,∠C=90°,CD是斜边AB上的高求证:三角形ACD相似三角形ABC

因为∠A+∠B=90°,∠DCA+∠A=90°,所以∠B=∠DCA,三角相等,所以△ACD相似于△ACB

rt三角形abc中,cd是斜边ab上的高 求证:ac的平方=ad•ab

△ABC∽△ACD这个不用说了吧?AC:AB=AD:AC得:AC×AC=AB×AD.

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

在rt三角形abc中 角acb=90度 cd是斜边ab上的中线 mn是三角形abc中位线 求证:mn

用到两个定理1.直角三角形斜边中线等于斜边一半2.中位线平行边且为边长的一半∵△ABC为RT三角形又∵CD是AB上的中线∴CD=AB/2∵MN是中位线∴MN=AB/2∴AD=MN

在Rt三角形ABC中,AD是斜边BC上的高,I1,I2分别是三角形ABD,三角形ACD的内心,求证:B,C,I1,I2四

连接I1D,I2D,分别平分△ABD和△ACD的直角,则I1D⊥I2D,连接AI1,AI2,△AI1D∽△CI2D,I1D/I2D=AD/DC,Rt△ACD∽Rt△I1I2D,∠I1I2D=∠C,四边

如图,RT三角形ABC中,AD为斜边BC的高,P为AD的中点,BP交AC于N,MN垂直BC于M,求证:MN是AN,NC的

O(∩_∩)O哈哈~这个问题我刚在搜搜问问中回答过,见:http://wenwen.soso.com/z/q237217300.htm不懂可以向我追问哦谢谢采纳O(∩_∩)O~

在RT三角形ABC中,M为斜边AB的中点,MN垂直AB,N在BC上,AB=10,AC=6,则三角形BMN的周长为?面积为

三角形ABC相似于三角形NBM,所以MN/MB=AC/CB由勾股定理可求得BC=8,MN=15/4,BN=25/4三角形NBM的周长为15,面积为75/8

如图,在直角三角形ABC中,CM是斜边AV上的中线,MN垂直于AB,角ACB的平分线CN交MN于N,求证CM=MN

过C作CD⊥AB,D为垂足因为MN⊥AB故:CD∥MN故:∠DCN=∠N因为CN平分∠ACB故:∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD因为CM是斜边AB上的中线故:AM=BM=CM

已知:在三角形ABC中,角C=90度,CD是斜边AB上的高.求证:三角形ACD相似于三角形CBD相似于三角形ABC

角A=角A=角DCB,角ACB=角ADC=角BDC,三角形ACD和ABC相似,三角形ACD和CBD相似,三角形ACD相似于三角形CBD相似于三角形ABC