三角形abc内接于圆o ab等于ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:53:05
三角形abc内接于圆o ab等于ac
三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

等腰三角形ABC内接于圆O,角A等于角B等于30

那么角c等于120度,圆半径,即r可用三角函数求得.具体方法就不用说了吧!

三角形ABC中,AB是底,AC等于BC,角ACB为80度,O为三角形内一点,角OAB为10度,角ABO为30度,问角AC

三角形ABC中,AC=CB,角ACB=80度,点O为三角形内一点,且角OAB=10度,角ABO=20度,求角ACO的度数.思路分析为证结论,先设法在图中造出60°角.由已知可得∠CBO=30°,将△O

如图,△ABC是圆O的内接三角形,∠C=∠OAB,OA=8cm,求AB的长.

 因为AB弧所对的圆心角为∠AOB,圆周角为∠C所以∠AOB=2∠C因为OA=OB,所以∠OAB=∠OBA因为∠OAB=∠C所以∠AOB=2∠OAB=2∠OBA在△OAB中,由内角和定理,得

已知:如图,三角形ABC内接于圆O,D为弧BC的中点,连接BD.求证:AC比AE等于AD比AB

补充:连结AD交BC于点E证明:∵D是弧BC的中点,∴∠DAC=∠BAD,又∵∠C=∠D,∴△AEC∽△ABD,∴AC/AE=AD/AB,证毕.

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

什么是三角形内接于圆?

三角形内接于圆也就是说三角形的三个顶点都在圆上.这个时候圆心是三角形的外心,是三角形三条边的中垂线的交点,这个圆称之为三角形的外接圆.你要求的到底是外接圆还是内切圆.外接圆是三个顶点在圆上内切圆是三条

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

已知:四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分∠BAD.证明三角形ABC相似三角形bCE

∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).

在三角形ABC中,D,E分别是BC,AB中点,AD与CE相交于点OAB等于3,AC=4,BC=5,OE=?

做三角形ABC的高AF,Rt三角形ADF中AD=2DF,所以AD=BC+2BD,又三角形BDE是正三角形BC+BD=AD-BD=AE原题没错阿,改了就不对了

三角形ABC内接于圆O中,角A=30度,BC=3

直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

等腰三角形ABC中,顶角C=80°,过A,B引两条直线,在三角形内交于点O,若角OAB=10°,∠OBA=30°,求∠O

∠OCA=40°具体过程:∵∠OAB=10°,∠OBA=30°∴∠AOB=140°∵∠OBC=(180°-80°)÷2-∠ABO=20°(延长AO交BC于D)∴∠ADB=120°∴∠ADC=60°设∠

矩形EFGH内接于三角形ABC,

由S=(1/2)*BC*AD=(1/2)*10*AD=100,求出AD=20;由EH平行于BC,可知三角形AEH与三角形ABC相似,得EH/BC=AH/AC;又三角形AMH与三角形ADC相似,得AM/

什么是三角形ABC内接于圆

解题思路:三角形内接于圆,就是三角形的三个顶点都在圆上。解题过程:三角形内接于圆,就是三角形的三个顶点都在圆上。也就是说,这个圆是三角形的外接圆。最终答案:略

三角形ABC内接于圆O,AB为直径,PA垂直平面ABC.COS角ABC等于5/6,PA:PB等于4:5,求直线PB和平面

因为AB为直径且△ABC内接于园,所以角ACB=90°,即BC垂直于AC.又因为PA垂直于面ABC,所以PA垂直于BC.所以得,BC同时垂直于AC、PA,所以BC垂直于面PAC.所以角BPC为直线PB

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B