三角形ABC内接于圆o,∠B=60°,CD是圆o的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:54:17
显然∠AOC=2∠Bsin∠B=sin∠AOC/2=4/5则cos∠AOC=cos2∠B=1-2sin²∠B=-7/25画图有OA向量-OC向量=CA向量则(OA向量-OC向量)²
(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF
关于如图,三角形ABC内接于圆O
1.画一个圆0,随意再画一个内角为60度的内接三角形.连接AO并延长与圆相交于D,连接DC,则DC垂直于AC,根据同弧所对的圆周角相等,角ADC=角B=60度,因为AC=12,所以AO=8根号3,O到
三角形ACB内接于圆O,易得角C=90°因为角C=90°所以角2+角3=90°因为角2=角CAD所以角3+角CAD=90°那么AD垂直于AB及AD为园O的切线再问:是第二题!!!!!!!再答:不好意思
连接AO,BO,则:三角形AOB为等腰三角形角BAO=角ABO角AOB=180度-角BAO-角ABO=180度-2*角ABO角ABO=90度-(1/2)角AOB因BE是切线,角EBO=90度角EBA=
证明(1):∵AD‖BC∴∠ADC=∠DCB又因为∠ADC=∠B(同弧上的圆周角相等)所以∠ACD=∠ACB-∠DCB=2∠B-∠B=∠B=∠DCB证明(2):∵AD‖BC所以DB弧=AC弧,从而DB
分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2
连接OC,OB因为pc,pb是圆O的切线所以
解因为2R=BC/sinA=2/√2/2=2√2所以圆的面积为s=πR²=2π
PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则
用正弦定理AC/sin30度=2RR为半径,R=2
(1)由于sinB=1/2,角B=30°,那么角AOC=60°,角CAD=角B=30°又OA=OC,所以三角形OAC为等边三角形,角OAC=60°.那么角OAD=60°+30°=90°,所以AD是圆O
EF是圆O的切线证明:∵AB是圆O的直径索要交ACB=90°∴∠B+∠BAC=90°∵∠EAC=∠B∴∠EAC+∠BAC=90°∴∠EAB=90°∴EF是圆O的切线再问:在平面直角坐标系中,圆M与x轴
∠CAB=∠B与AE线无关,所以您的题目有误,应为∠CAE=∠B.连接AO并延长交圆的另一端于D,再连接CD.AD为⊙O的直径,故∠ACD=90°,则∠D+∠CAD=90°.∠B=∠D(圆周角相等),
直线AD与圆O相切.证明:连接AO并延长交圆O于E,连接CE.AE为直径,则:∠ACE=90°,∠CAE+∠E=90°.∵∠E=∠ABC;∠CAD=∠ABC.∴∠CAD=∠E,故∠CAE+∠CAD=9
2.延长ao交圆与d点连接cd、co角acd为90度(直径所对应的圆周角为90度)角adc为30度(同意段弧线所对应的圆周角相等)ac=ao=co=2三角形aco为等边三角形交coa为60度刚没看到你
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B