三角形ABC内接于圆O,角A所对的弧的度数为120度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:33:18
三角形ABC内接于圆O,角A所对的弧的度数为120度
三角形ABC内接于圆O,其中AB为圆O的直径,PA垂直于平面ABC,AC=BC=2,PA=AB,求直线PB和平面PAC所

主要步骤:由AB为直径,AC=BC,可知△ABC是等腰RT△,BC⊥AC,又PA⊥面ABC,则PA⊥BC,即BC⊥面PAC,故∠BPC为直线PB与面PAC所形成角.AB=2√2,PA=AB=2√2,P

等腰三角形ABC内接于圆O,角A等于角B等于30

那么角c等于120度,圆半径,即r可用三角函数求得.具体方法就不用说了吧!

三角形ABC内接于圆O,已知圆O的半径为4,SIN A=5/8 求弦长 BC .

经过圆心O做线段AD垂直于BC交圆O于点D交BC于点E连接OB,OC则

如图,三角形ABC内接于圆O,AE是圆O的直径,AD垂直BC于点D,角BAE于角CAD相等吗?

相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

如下图所示,三角形内接于圆o的直径,cd是三角形abc中ab边上的高,求证

估计同学将题目抄写错了.是不是如下问题: 三角形内接于圆O,CE是圆O的直径,CD是三角形ABC中AB边上的高.求证:AC*BC=CE*CD (或求证:AC*BD=AE*CD)&n

三角形ABC内接于圆O中,角A=30度,BC=3

直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2

几何证明选讲5.如图,三角形ABC是圆O的内接三角形,PA是圆O 的切线,A为切点,PB交AC于点E ,交圆O 于点D

因为PA是圆O的切线,A为切点,所以角PAC=弧ADC所对的圆周角=角ABC=60度,又因为PE=PA,所以三角形PAE是等边三角形.PA^2=PD*PB=1*(1+8)=9PA=PE=AE=3DE=

三角形ABC内接于圆心O,若角A=45度,BC=2求圆的面积

解因为2R=BC/sinA=2/√2/2=2√2所以圆的面积为s=πR²=2π

三角形ABC中,角A=60度,AC=8,AB=10,圆O内切于圆,求圆O面积.

初三没有么?现在的内容又改了.那好吧,可以设圆的半径为r,圆与△ABC各边分别相切于点D、E、F,要知道,连接OA、OB、OC、OD、OE、OF,得出OA、OB、OC为角A、B、C的角平分线,而OD=

三角形ABC内接于圆O,D在半径OB 的延长线上,角BCD=角A=30度,证明cd与圆O 相切

连接OC由圆周角定理可知∠BOC=2∠A=60°∵OB=OC,∠BOC=60°∴ΔOBC为等边三角形∴∠OCB=60°∴∠OCD=∠OCB+∠BCD=60°+30°=90°∴OC⊥CD∴CD与圆O相切

三角形ABC内接于圆O,角B=30度,AC=2,则圆O半径长为?

用正弦定理AC/sin30度=2RR为半径,R=2

如图,三角形ABC内接于圆O,AD平分角BAC交圆O于D,DE垂直AB于E

(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A

如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E

∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60

三角形ABC内接于圆O,连结AO并延长交圆O于点E,过点A作AD垂直BC于点D

1.连接OB,OB=OA=OE=r三角形ABE为直角三角形角EAB+角E=90角E与角C对应同弧,角E=角C角EAB=90-角E=90-角C=角CAD2.三角形ABE相似与三角形ADCAD/AC=AB

三角形ABC中,角A=60度,AC=8,AB=10,圆O内切于圆,求圆O面积.求详细过程

先由余弦定理求出BC长(cos60=两邻边平方和减第三边的平方再除以两邻边的二倍),然后将三角形用三条垂直于三边的半径分成三个三角形,用分割开的三个三角形面积和=用正弦定理求出的三角形面积,算出R只要

什么是三角形ABC内接于圆

解题思路:三角形内接于圆,就是三角形的三个顶点都在圆上。解题过程:三角形内接于圆,就是三角形的三个顶点都在圆上。也就是说,这个圆是三角形的外接圆。最终答案:略

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B