三角形ABC内接于圆两条高

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:04:59
三角形ABC内接于圆两条高
三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

三角形ABC内接于半圆,AB是直径,过A作直线MN

角CAB+角ABC=90度角MAC等于角ABC所以角MAC+角CAB=90度=角MAB,为直角,MN为切线

如图所示,△ABC内接于

(1)证明:连接OC.              (1分)∵

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,三角形ABC内接于圆O,AD是直径,AD BC相交于点E.角ABC=50度求角BAC 角BCA

你这一题缺少条件,怎么缺少条件呢,我给你讲讲其实这道题角ABC=50度这个条件是可以变动的,你可以把B点画到圆弧AD的任意一点中,想想看,当把点B画到A点的旁边一点点,再构造一个角ABC=50度,同样

已知:正方形DEFM内接于三角形ABC,若S三角形ADE=1,S正方形=4,求S三角形ABC 快

S正方形=4,则正方形边长为DE=2过A作三角形ABC的高交DE于N点,BC于KS三角形ADE=DE*AN/2=1AN=2/4=0.5AK=2+0.5=2.5S三角形ABC=S三角形DBM+S三角形E

什么是三角形内接于圆?

三角形内接于圆也就是说三角形的三个顶点都在圆上.这个时候圆心是三角形的外心,是三角形三条边的中垂线的交点,这个圆称之为三角形的外接圆.你要求的到底是外接圆还是内切圆.外接圆是三个顶点在圆上内切圆是三条

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

已知:四边形ABCD内接于圆O,连接AC和BD交于点E,且AC平分∠BAD.证明三角形ABC相似三角形bCE

∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).

三角形ABC内接于圆O中,角A=30度,BC=3

直接用正弦定理a/sinA=b/sinB=c/sinC=2R(a、b、c分别表示三角形的三边,A、B、C分别表示a、b、c三边所对的角,R表示三角形外接圆半径)BC/sinA=2R3/sin30°=2

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

三角形ABC内接于圆心O,若角A=45度,BC=2求圆的面积

解因为2R=BC/sinA=2/√2/2=2√2所以圆的面积为s=πR²=2π

三角形ABC内接于圆O,角B=30度,AC=2,则圆O半径长为?

用正弦定理AC/sin30度=2RR为半径,R=2

矩形EFGH内接于三角形ABC,

由S=(1/2)*BC*AD=(1/2)*10*AD=100,求出AD=20;由EH平行于BC,可知三角形AEH与三角形ABC相似,得EH/BC=AH/AC;又三角形AMH与三角形ADC相似,得AM/

什么是三角形ABC内接于圆

解题思路:三角形内接于圆,就是三角形的三个顶点都在圆上。解题过程:三角形内接于圆,就是三角形的三个顶点都在圆上。也就是说,这个圆是三角形的外接圆。最终答案:略

已知Rt三角形ABC中,角B=90度,有三个正方形内接于三角形ABC,

9连结3个正方形对角线会出现三对相似三角形边长比为16/12=4/3

如图,三角形ABC内接于○O,AB=AC,AO⊥BC于D,

连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B