三角形abc是等边三角形 点d是射线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:16:40
三角形abc是等边三角形 点d是射线
已知,三角形ABC是等边三角形,点D,E分别在边BC,AC上,角ADE=60度.求证:三角形ABD相似与三角形DCE

因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE

如图,三角形ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE.

点D在BC中点时,四边形CDEF是平行四边形,且∠DEF=30°证明:∵设点D在BC中点∴AD是△ABC的中线∴AD平分∠BAC又∵△ABC是等边三角形∴∠BAD=∠CAD=1/2∠BAC=30°∵C

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

D是等边三角形ABC上一动点以CD为一边向上做等边三角形EDC连接AE找出图中的一组全等三角形并说明理由

其实一点也不难找,请楼主自己根据题意画图哈,然后看我说的:三角形BCD和三角形ACE是全等的,原因是BC=AC,DC=EC,

三角形abc是等边三角形,d、e分别是cb、ac上的点,且bd=ce,以ad为边作等边三角形adf,连接ef,

1.我的思路是,由题设不难证三个三角形ABD,BCE,ACF全等,进而知三角形CEF为正三角形,进而知四边形BDFE的两组对边相等,即四边形BDFE为平行四边形,故BE平行DF.BE=AD=DF=AF

三角形ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),三角形ADE是以AD为边的等边三角形,过点

(1)证明:所以∠EAB=∠DAC,又EA=DA,BA=CA,故ΔAEB≌ΔADC.于是∠EBC=∠EBA+∠ABC=∠DCA+∠ABC=120°.那么∠EBC+∠BCG=120°+60°=180°,

在等边三角形ABC中 点D在BC的延长线上 CE平分 角ACD 且CE=BD 求证 三角形ADE是等边三角形

证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA

如图一三角形abc是等边三角形,d是三角形abc内一点,将三角形abd绕点a旋转60度得三角形ace连接de,dc可以

将三角形BCP以B为中心旋转,使BC,AB重合得到三角形ABP’全等于三角形BCP则因为∠P’BP=90所以PP’=2根号2A在三角形APP’中A,2根号2A,3A符合勾股定理所以∠APP’=90因为

在等边三角形abc中d是ab边上一动点以cd为一边向上作等边三角形edc连接ae 若三角形

ab=bc=ac=2根号3,cd=de=cd=3,ad=db=根号3S.aecb=S△bde+S△edc+S△adc=1/2*db*de*sin30+1/2*3*3/2根号3+1/2根号3*2根号3=

已知三角形ABC是等边三角形,D,E分别是BC,AC上的点,且BD=CE,以AD为边在AC一侧作等边三角形ADF.

1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,

如图,三角形ABC为等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

三角形abc为等边三角形,d、e、f分别是ab bc ca上的点,且ad:db=be:ec=cf:fa,则三角形abc相

由已知AD:DB=BE:EC等式两边加一推出:1+AD:DB=1+BE:EC1可以推导为:DB:DB+AD:DB=EC:EC+BE:EC得:AB:DB=BC:EC由于三角形ABC为等边三角形可推出DB

如图中三角形abc是等边三角形

∴⊿ABC是等边三角形,∴∠ACB=60º,又D为AC的中点,∴BD⊥AC,∴∠DBC=30º,又CE=CD,∴∠CDE=∠E,又∠CDE+∠E=60º,∴∠E=30&#

如图所示,三角形ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点.

(1)△DEF是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,∴△ADF≌△BED≌△CFE,∴DF=DE=EF,即△DEF

如图.三角形ABC是等边三角形,延长AC至点D,以BD为一边作等边三角形BDE,连结AE.求证﹕AD﹦AE﹢AB

∵∠ABE=∠ABC-∠EBC=60°-∠EBC∠DBC=∠DBE-∠EBC=60°-∠EBC∴∠ABE=∠DBC∵AB=AC,BE=BD∴⊿ABE≌⊿CBD∴AE=CD∵AD=AC+CD∵三角形AB

如图所示,点D为等边三角形ABC的AC边上的一点,角ACE=角ABD,CE=BD,则三角形ADE是等边三角形吗?请说明理

E在AB上.由条件:AB=AC,∠ABD=∠ECD,∠A是公共角,∴△ABD≌△ACE(A,S,A)∴BD=CE.∴△ABD≌△ACE(S,A,S),∴AD=AE,在△ADE中,∠A=60°,∴△AD

如图三角形ABC为等边三角形,D分别是BC上的点,以AD为边作等边三角形ADE求证:三角形ACD全等于三角形ABE.

角BAD+角CAD=BAD+角BAE=60度,角CAD=角BAE.AD=AE,角CAD=角BAE,AC=AB,三角形ACD全等于三角形ABE