三角形acb和三角形ecd是以点c为公共顶点的等腰直角三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:44:47
三角形acb和三角形ecd是以点c为公共顶点的等腰直角三角形
证明三角形相似证明三角形ABC和三角形ECD是相似三角形.

连接AC、OC∵直径AB∴∠ACB=90∵BC=CD∴AC垂直平分BD∴AD=AB=6,∠ACE+∠DCE=∠ACD=90,∠BAC=∠DAC∵OC=OA∴∠OCA=∠BAC∴∠OCA=∠DAC∵CE

一道初一全等三角形已知,如图,三角形ABC和三角形ECD都是等腰三角形,∠ACB=∠DCE=90°,D为边AB上一点,求

90°.∵等腰△ABC和△ECD∴∠ECD=∠ACB=90°,∠CED=∠B=∠CAB=45°EC=CD,AC=BC∴∠ECA=∠DCB∴在△ECA和△DCB中EC=DC∠ECA=∠DCBAC=CB∴

已知如图三角形ABC和三角形ECD都是等腰直角三角形∠ACB=∠DCB=90度 D为AB边上一点求证BD=AE

题目中,已知条件有个地方写错了吧,应该是:“等腰直角三角形∠ACB=∠DCE=90度”,是不是?是的.如上图:证明:在△BCD和△ACE中∵∠ACB=∠DCE=90º∴∠ACB-∠ACD=∠

如图,三角形ABC和三角形ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.

由△ACE≌△BCD知AE=BD=12,角aec=角abc=45°,角ead=45°+45°=90°;在三角形aed中,勾股定理即可,自己做吧

如图,三角形ABC和三角形ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.

BC=ACDC=EC∠ACD+∠ECA=∠DCB+∠ACD(1)得证由题可算出BC又∠CBD=45°可算出CD固ED可算出△ACD三边已得可算出∠ACD△ACEACCE边已得夹角已得可算出AE易证△C

如图,已知三角形ABC和三角形ECD都是等腰直角三角形,角ACB=角DCE=90度,D为AB边上一点

连接BE∵△CAB 和 △CDE 都为等腰直角三角形且∠ACB=∠DCE=90°∴∠ACD=∠BCE又∵AC=BC   CD=CE∴△ACD

如图,三角形ACB和ECD都是等腰直角三角形,ACB的顶点在ECD的斜边DE的延长线上,求证:(在图上)

证明:连接BD因为∠ECD=∠ACB=90°所以∠ECA+∠ACD=∠DCB+∠ACD=90°所以∠ECA=∠DCB,又EC=DC,AC=BC,所以△ECA≌△DCB,从而AE=BD,∠BDC=∠AE

三角形ACB和三角形ECD都是等腰直角三角形,∠ACB=∠ECD,D为AB边上一点,求证:AD²+DB&sup

.△ACB和△ECO都是等腰三角形,∠ACB=∠ECD=90°=>AC=BCDC=EC∠ACB=∠ECD=90°=>∠ACB-∠ACD=∠ECD-∠ACD即∠BCD=∠ACE联合=>△ACE≌△BCD

如图,三角形ABC和三角形ECD都是等腰直角三角形,角ACB=角DCE=90°,D为AB边上一点.求证:AD^2+BD^

证明:连接BE∵∠ACB=∠ECD=90,AC=BC,DC=EC∴∠A=∠ABC=45,DE=√2CD∵∠ACD=∠ACB-∠BCD,∠BCE=∠ECD-∠BCD∴∠ACD=∠BCE∴△ACD≌△BC

三角形ABC和三角形ECD都是等腰直角三角形,∠ACB=∠DCE=90°.D为AB边上一点求证AE=BD

角ACE=角DCB,AC=BC,CE=CD,所以,三角形CAE全等于三角形CBD,得到AE=BD再问:лл

如图,已知三角形ABC和三角形ECD都是等腰直角三角形,角ACB=角DCE=90度,D为AB边上一点,试判断△AED的形

因为没看到图,根据题意,应该是A、E在CD同侧吧?那么△AED为直角三角形△ACE和△BCD中CE=CD,CA=CB,角ACE=角BCD=90-角ACD所以△ACE≌△BCD(SAS).角EAC=角D

已知如图三角形ABC和三角形ECD都是等腰直角三角形,角ACB=角DCE=90,D为AB边上一点

(1)证明:∵ΔABC和ΔECD都是等腰直角三角形,且∠ACB=∠DCE=90度∴AC=BC,CD=CD,且∠ACE+∠ACD=∠ACD+∠BCD=90度∴∠ACE=∠BCD∴ΔABC≌ΔECD(SA

在三角形abc和三角形edc中,ac=ec=bc=dc,角acb=角ecd=90度,ab与ce交于点f,ed与ab,bc

亲,这是最简单的三角形全等题∵AC=EC=BC=DC∴角A=角B=角E=角D∴三角形ECH全等三角形BCF∴CF=CH再问:谢谢,亲

如图,三角形abc和三角形ecd都是等腰直角三角形,角acb等于角dce等于90度,d为ab上的一点.求证:bd等于ae

由题意知:ac=bc,dc=ec∵∠eca+∠acd=90∠bcd+∠acd=90∴∠eca=∠bcd∴△ace全等于bcd∴bd=ae再问:如图,已知ab等于ac,d是ab上的一点,de垂直bc于点

如图,已知三角形ACB和三角形ECD都是等腰三角形,A,C,D三点在同一条直线上,连接BD,AE,并延长AE交BD于F.

(1)因为△ACB和△ECD都是等腰直角三角形,所以AC=BCEC=CD又因为∠BCD=∠ACB=90°所以△ACE≌△BCD(SAS)(2)直线AE与BD互相垂直就是证明∠AFD=90°所以延长AE

如图,三角形ABC和三角形ECD都是等腰直角三角形,角ACB=角ECD=90度,D为AB上一点

(1)由ABC为等腰三角形得,AC=BC;同理得CE=CD;角ACE=90-角ACD,而角BCD=90-角ACD,所以可得三角形ACE全等于三角形BCD.(2)由(1)可知角CAE=CBD=45,而角

如图,已知△ABC和三角形CDE中,AC=BC,CD=CE,∠ACB=∠ECD,M、N分别为AE、BD的中点,连CM、C

已知△ABC和三角形CDE中,AC=BC,CD=CE,∠ACB=∠ECD所以△ACE≌△BCD所以AE=BD,∠EAC=∠CBD因为M、N分别为AE、BD的中点所以AM=BN,∠MAC=∠NBC因为A

初二数学勾股定义已知:如图,三角形ABC和三角形ECD都是等腰三角形,∠ACB=∠DCE=90°,D为AB边上的一点.求

证明:(1)∵△ABC,△ECD都是等腰三角形∴AC=BC,EC=DC,∠ECD=∠ACB=90°∴∠ECD-∠ACD=∠ACB-∠ACD即∠ACE=∠BCD∴△ACE≌△BCD(2)∵△ACE≌△B