三角形外角平分线.内角平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:09:29
三角形外角平分线.内角平分线
三角形内角平分线定理是什么?

内角角平分线定理角平分线的性质定理.其内容是性质1在角平分线上的点到这个角的两边的距离相等.性质2到一个角的两边的距离相等的点,在这个角的平分线上.综合定理1,2可得如下结论:角的平分线是到角的两边距

三角形内角平分线

解题思路:根据题意,由角平分线的性质可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu

哪里有关于三角形的试题?三角形内角和的.外角的.高 中线 和角平分线的.

看下这个网站http://math.zhongkao.cn/UpF_Article/2007-01/20071412566501.doc里面有

求证三角形内角平分线定理

证明:作DE//AC,交AB于E.角EAD=角CAD=角EDA所以EA=ED所以BD/CD=BE/EA=BE/ED=BA/AC

三角形内角平分线的性质?

角平分线上的点到角两边的距离相等再问:高中向量这章,不是这个再答:三角形的角平分线分对边所得的两条线段与角的两边对应成比例。再问:就是这个,谢谢啊

三角形内角平分线定理

三角形内角平分线性质定理是:在ΔABC中,若AD是∠A的平分线,则BD/DC=AB/AC应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内分对边,所得的两条线段与这个角的两边对应成比例.

“三角形一个内角平分线与另两个内角的外角平分线交于一点”这个定理怎么证明?

证明:设P是△ABC的两个外角平分线BP,CP的交点过P作PE⊥AB于E,PF⊥BC于F,PH⊥AC于H根据角平分线上的点到角两边距离相等,知PE=PF,PF=PH所以PE=PH又PE⊥AB,PH⊥A

如图,三角形ABC的内角平分线BE与角ACB的外角的平分线CE交于点E.

1、20°2、40°3、80°4、阿尔法-20°你可以看出这样的数量关系了,就是a-20°就是e角为什么呢?你可以先在纸上把这个图画出来,设角B为2X,首先我们设BE和AC交于D点,然后ADB=180

如图,已知:CD,CF分别是三角形ABC的内角平分线和外角平分线,

∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=

怎样证明三角形两个外角平分线的交点在第三个内角的平分线上

过两外角平分线交点作垂线EG、EF、EH,根据角的平分线到两边距离相等可得:EG=EH;EF=EH.所以EG=EF,所以,BE是角ABC的平分线.

三角形的外角平分线定理

"外分”就是外角平分线与对边的延长线相交.“三角形的外角平分线外分对边所成的两条线段”就是外角平分线与对边的延长线相交的交点到对边两端点的线段.

三角形内角平分线性质定理

解题思路:利用相似三角形的判定和性质解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include

CE,CF分别是三角形ABC的内角平分线和外角平分线,求三角形ECF的度数

倒...求的是ECF的度数吧?如果是三角形,那角的度数就该是180呀...ECF的度数是90因为C角的内角平分线和外角平分线..刚好平分啊..我晕哦角BCE=角ECA=1/2ACB角ACF=角XCF=

已知:如图,BE是三角形ABC的内角平分线,CE是三角形ABC的外角平分线.求证:角E=1/2角B

好像应该是2∠E=∠A设CE是∠ACD的角平分线∴∠ECD=∠EBC+∠E∠ACD=2∠ECD∴∠A+∠ABC=2∠EBC+2∠E∴2∠E=∠A

已知:如图,BE是三角形ABC的内角平分线,CE是三角形ABC的外角平分线.求证:角E

因为角E+角EBC+角ECB=180度转换角E+角ABC/2+角ACB+(180度-角ACB)/2=180度故有角E+角ABC/2+角ACB/2=90度即2*角E+角ABC+角ACB=180度又因为角

如图 OB OC分别为三角形ABC的内角 外角角平分线 交于O

 如图作辅助线,OE、OD、OH分别垂直于BE、AC、BD1、根据OB、OC是角平分线,得到OD=OE,OE=OH,所以OD=OH,所以AO平分角DAC 2、根据外角定理,∠O=∠

在三角形abc中角a等于角A,角三角形abc的内角平分线和外角平分线交于点p

题目:如图,在三角形ABC中,角A=a,三角形ABC的内角或外角平分线交于点p,角p=贝塔,试探求图1,2,3中a与贝塔的关系好,并证明你的这些结论.(1)可以把∠A=α,作为已知,求∠P即可.根据三