三角形外角角平分线和内角角平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:15:10
90度啊很显然吧?
过F做AB,AC,BC的垂线,垂足为GHIBF平分角CBD所以GF=IFCF平分角BCE所以FH=FI所以GF=FH又FG和FH是垂线,所以AF平分角BAC所以F在角BAC的平分线上
看下这个网站http://math.zhongkao.cn/UpF_Article/2007-01/20071412566501.doc里面有
∠ACD=1/2(∠ABC+∠A),∠ABD=∠CBD,∠A+∠ABD=∠D+∠ACD,∠A+∠ABD=∠D+1/2(∠ABC+∠A)∠D=1/2∠A,
根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B
1、20°2、40°3、80°4、阿尔法-20°你可以看出这样的数量关系了,就是a-20°就是e角为什么呢?你可以先在纸上把这个图画出来,设角B为2X,首先我们设BE和AC交于D点,然后ADB=180
∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=
过两外角平分线交点作垂线EG、EF、EH,根据角的平分线到两边距离相等可得:EG=EH;EF=EH.所以EG=EF,所以,BE是角ABC的平分线.
已知,点P在△ABC的外角平分线BP上,可得:点P到直线AB和直线BC的距离相等;已知,点P在△ABC的外角平分线CP上,可得:点P到直线AC和直线BC的距离相等;所以,点P到直线AB和直线AC的距离
http://zhidao.baidu.com/question/318990935.html
B任意三角形内角和都是180度.正确.A三角形的中线角平分线高线都是线段.正确.高线:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.是线段一个三角
因为角E+角EBC+角ECB=180度转换角E+角ABC/2+角ACB+(180度-角ACB)/2=180度故有角E+角ABC/2+角ACB/2=90度即2*角E+角ABC+角ACB=180度又因为角
证明:过点P作PH⊥BC于H,PM⊥AD于M,PN⊥AE于N∵AP平分∠BAC,PM⊥AD,PN⊥AE∴PM=PN∵BP平分∠CBD,PM⊥AD,PH⊥BC∴PM=PH∴PH=PN∴PC平分∠BCE
如图作辅助线,OE、OD、OH分别垂直于BE、AC、BD1、根据OB、OC是角平分线,得到OD=OE,OE=OH,所以OD=OH,所以AO平分角DAC 2、根据外角定理,∠O=∠
过点P做PM⊥AE,PN⊥AF,PK⊥BCPB平分∠CBEPM=PKPC平分∠BCFPK=PNPM=PNAP平分角BAC
连CP,用三角形角平分线到两边的垂线长相等来做!
解题思路:根据题意,由三角形外角的知识可求解题过程:见附件最终答案:略
题目:如图,在三角形ABC中,角A=a,三角形ABC的内角或外角平分线交于点p,角p=贝塔,试探求图1,2,3中a与贝塔的关系好,并证明你的这些结论.(1)可以把∠A=α,作为已知,求∠P即可.根据三
1.BAC+ACB+ABC=180→ABC+ACB=180-BACABC+2PBC=180,ACB+2PCB=180→ABC+ACB=360-2PCB-2PBC所以180-BAC=360-2PCB-2