三角形的一个内角的平分线与它的对边相交,这个角什么之间的线段叫做三角形的角平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:12:55
三角形的一个内角的平分线与它的对边相交,这个角什么之间的线段叫做三角形的角平分线
三角形内角平分线的性质的证明

过D作AB的垂线,垂足为E过D作AC的垂线,垂足为F因为角平分线上的点到角两边的距离相等所以DE=DF记三角形ADB的面积为S1,三角形ADC的面积为S2则S1:S2=AB:AC(以AB,AC为底来看

在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做( ).

在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做(这个三角形的角平分线).

在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的平分线.性质:

1、平分内角;2、在三角形内部;3、角平分线上的点,到角的两边的距离相等.再问:���������,һ���ڽǵĽ�ƽ��������ĶԱ��ཻ,����ǵĶ����뽻��֮����߶ν�������

在一个三角形中,两个内角平分线相交而成的一个钝角的度数与另一个内角的度数之间有什么关系?记住,

设∠A与∠B的平分线角与O点则∠AOB=180-(∠A+∠B)/2而∠C=180-(∠A+∠B)所以2∠AOB=360-(∠A+∠B)=∠C+180度所以2∠AOB-∠C=180

请告诉我三角形内角平分线的性质

三角形的内角平分线分对边所得的两条线段,与三角形的两条边对应成比例.(即△ABC中,∠A的平分线AD交对边于D,则BD/CD=AB/AC).

三角形内角平分线的性质?

角平分线上的点到角两边的距离相等再问:高中向量这章,不是这个再答:三角形的角平分线分对边所得的两条线段与角的两边对应成比例。再问:就是这个,谢谢啊

“三角形一个内角平分线与另两个内角的外角平分线交于一点”这个定理怎么证明?

证明:设P是△ABC的两个外角平分线BP,CP的交点过P作PE⊥AB于E,PF⊥BC于F,PH⊥AC于H根据角平分线上的点到角两边距离相等,知PE=PF,PF=PH所以PE=PH又PE⊥AB,PH⊥A

三角形内角平分线定理的证明

△ABC中,AD是角平分线,求证:AB/AC=BD/CD.最简单的方法是用面积证明:一方面:△ABD的面积/△ACD的面积=BD/CD(分别以BD、CD为底,高相同).另一方面,分别以AB、AC为底计

三角形的内角平分线平分三角形的一个( ),三角形的中线平分三角形的一条( ),三角形三条角平分线

三角形的内角平分线平分三角形的一个(角),三角形的中线平分三角形的一条(边),三角形三条角平分线在三角形内部交于(重)点,三条中线也在三角形内部交于(中)点.

如图,BD、CD分别是 三角形ABC 的一个内角的平分线与一个外角的平分线,问 角BDC 与 角A 之间的等量关系.

如下分析:∠ABD=∠DBC;∠ACD=∠DCE;∠D=∠DCE-∠DBC(补角定理);∠A+∠ABD=∠D+∠ACD(对顶角定理);将以上两式合并,得出∠A+∠ABD=∠DCE-∠DBC+∠ACD将

三角形一个内角的角平分线与对边相交于一点,()与()之间的线段叫做三角形的角平分线.

三角形一个内角的角平分线与对边相交于一点,(这个角的顶点)与(交点)之间的线段叫做三角形的角平分线.三角形有(3)条角平分线

如图,BD·CD分别是三角形ABC的一个内角的平分线与一个外角的平分线,角A=50°,求BDC的度数.

∵BD平分∠ABC(已知)∴∠DBC=二分之一∠ABC(角平分线定义)∵CD平分∠ACE(已知)∴∠ACD=二分之一∠ACE(角平分线定义)∵∠A=180°-∠B-∠C(三角形内角和180)∠BDC=

画出三角形三个内角的平分线

你发现了什么特点?发现三角形三个内角平分线交于一点

怎样画三角形内角的平分线

用圆规,以角点为中心,在角点的两边上以一半径画圆,在两交点再以同一半径画弧交于角内一点与角点相连便可.

BD,CD分别是三角形ABC的一个内角的平分线与一个外角的平分线,试探究角BDC与角A之间的等量关系.

如图所示,∵BD平分∠ABC (已知)∴∠DBC=二分之一∠ABC(角平分线定义)∵CD平分∠ACE(已知)∴∠ACD=二分之一∠ACE(角平分线定义)∵∠A=180°-∠B-∠C(三角形内

求证:三角形的三个内角的平分线相交与一点

三角形ABC,角A,B的平分线交于P,过P做AB,BC,AC垂线垂足分别为D,E,F△AFP≌△ADP,△BDP≌△BEP所以:PD=PF=PE因为:PE⊥BC,PF⊥AC,PC公用所以:△CEP≌△