三角形相似定理
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:53:48
相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例
如果两个三角形的两角相等,那么这两个三角形相似.证明:设△ABC和△DEF,∠A=∠D,∠B=∠E∵三角形内角和=180°∴∠C=180°-∠A-∠B=180°-∠D-∠E而∠F=180°-∠D-∠E
相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例
全等三角形证明:1.角角边“AAS”(已知两个角和其中一个角对应的边对应相等)2.角边角“ASA”(已知两个角及其夹边对应相等)3.边角边“SAS”(已知两条边及其夹角对应相等)4.边边边“SSS”(
数学证明相似三角形预备定理20-离问题结束还有14天23小时仅用相似三角形的定义证明该定理相似三角形预备定理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
证明:设△ABC和△DEF,∠A=∠D,∠B=∠E∵三角形内角和=180°∴∠C=180°-∠A-∠B=180°-∠D-∠E而∠F=180°-∠D-∠E∴∠C=∠F∵∠C=∠F,∠A=∠D,∠B=∠E
解题思路:相似三角形的判定.数形结合思想、分类讨论思想与方程思想的应用解题过程:解答见附件,如何还有疑问,欢迎添加讨论祝学习愉快!最终答案:略
全等三角形的判定定理1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”).3.有两角及其夹边对应相等的两个三角形全等(ASA
http://baike.baidu.com/view/276158.htm#2_2百科很详细
很明显△BDE∽△GCF,所以有BE/DE=GF/CF而DE=GF=EF,所以BE*CF=EF^2这种题目不要太简单再问:BED怎么相似于GCF的?再答:直角等,同角的馀角等,有∠B=90°-∠C=∠
解题思路:本题主要根据相似三角形的知识进行解答即可解题过程:证明:∵AB:AD=BC:DE=AC:AE∴⊿ABC∽⊿ADE【三条对应边成比例,两三角形相似】∴∠BA
1.证明两对应角相等.2.证明两对应边成比例,两边夹角相等.
相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例
证明(简写):因为:角CDF=角DCE(三角形CDE中,斜边中线等于斜边一半)又因为:角A=角DCE所以:角CDF=角A又因为角F=角F所以:三角形ADF相似于三角形DCF所以:AD:CD=DF:CF
解题思路:根据题意,利用三角形相似,然后代人即可,注意方法解题过程:
对应角相等,对应边成比例的两个三角形叫做相似三角形.(similartriangles)互为相似形的三角形叫做相似三角形.例如右图中,若B'C'//BC,那么角B=角B',角BAC=角C'A'B',是
相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例
解题思路:根据已知可得到△BDA∽△ADC,注意∠C可以是锐角也可是钝角,故应该分情况进行分析,从而确定∠BCA度数.解题过程:解:(1)当∠C为锐角时,由AD2=BD•DC,AD是
定理二:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(先分别画两个三角形,分别定为ABC,A1B1C1)已知:AB:A1B1=AC:A1C1,角A=角A
相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例