三重积分(x^2 y^2)dxdydz, 2z=x^2 y^2,z=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:46:52
三重积分(x^2 y^2)dxdydz, 2z=x^2 y^2,z=2
高数三重积分疑问我举一例 对2zdxdydz的三重积分 积分区域为x^2+y^2+z^2=a^2(a为常数)这个题目能用

积分区域应为x^2+y^2+z^20),原式=∫∫dxdy∫zdz=0.其中D是x,y的积分区域.设x=rcosαcosβ,y=rcosαsinβ,z=rsinα,则α,β∈[0,2π),0

三重积分sin根号下(x^2+y^2+z^2)除以根号下(x^2+y^2+z^2)

注意ρ代表积分变量而R是积分限,所以在ρ的积分表达式中应该是关于ρ表达式而不是关于R的,所以最后一个ρ的积分应该是∫(sinρ/ρ)ρ^2dρ,积分限都是正确的.所以应该是∫dθ∫sinφdφ∫ρsi

利用三重积分计算由曲面z= √(x^2+y^2),z=x^2+y^2所围成的立体体积

这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用

球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分

∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5

求三重积分想[(y^2+x^2)z+3]在积分区域x^2+y^2+z^2

具体见图片,不过由于积分区域是关于xoy面对称的,而(y^2+x^2)z是关于z来说是奇函数,所以这部分的积分不用算就等于0了.

椭球面的三重积分求x^2/a^2+y^2/b^2+z^2/c^2的三重积分,其中积分区域由曲面x^2/a^2+y^2/b

oh,mygod,你看看高教第五版配套辅导教材,三重积分那一章的讲解,好像有这套例题

求三重积分∫dv,积分区域是由z=x^2+y^2,z=1/2*(x^2+y^2),x+y=±1,x-y=±1围成

原来是极坐标变换啊,投影区域是矩形,还真有些难度的.同样用对称性∫∫∫ΩdV=4∫∫∫Ω₁dV=4∫(0→1)∫(0→1-x)∫(1/2)(x²+y²)→x²

三重积分问题三重积分(x+z),是z=根号(x^2+y^2)与z=根号(1-x^2-y^2)围成的,怎么计算简便?

方法有2种,一是求圆锥面与球面的交面在xoy平面的投影,x^2+y^2=1/2,于是可得D={(x,y)|-√(1/2-x^2)≤y≤√(1/2-x^2),-√2/2≤x≤√2/2},则∫∫∫(x+z

用三重积分求曲面z=2-(x^2+y^2)与z=X^2+y^2所围立体体积

稍等再答:再答:降三重积分为二重积分最简单。

高数三重积分问题例如三重积分为∫∫∫(x^2+y^2-+z^2)^2dv 是怎样等于∫∫∫(x^2+y^+z^2)dv

不是说关于哪个轴对称,而是应该说是关于哪个平面对称!要注意想……x^2+y^2+z^2

计算三重积分∫∫∫zdv,曲面z=√(2-x^2-y^2)及z=x^2+y^2围成的闭区域

积分限定的是正确的,不是正解.∫∫∫zdv=∫(0,1)zπz^2dz+∫(1,√2)zπ(2-z^2)dz=π/4+π[z^2-(1/4)z^4](1,√2)=π/4+π[(2-1)-(1-1/4)

三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋

可能是哪里想不通吧~以✔10为上限的是投影法,以✔(2x)为上限的是切片法再问:懂了懂了,一时糊涂了,谢谢你!

三重积分柱坐标为什么有时计算三重积分时必须用柱坐标才能得到正确结果?直接用xyz的范围算不可以么例如Ω为x^2+y^2+

你用xyz算也是可以的.结果不符合,说明你的解法出现问题.因为柱坐标和球坐标的解法是雅各比行列式的特例.用xyz去算的话,最后你还是要根据定积分求原函数的几个方法去计算,而雅各比行列式可以是一种另类的

计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:x^2+y^2+z^2=a^2

原式=∫dθ∫dφ∫r²*r²sinφdr(作球面坐标变换)=2π∫sinφdφ∫r^4dr=2π[cos(0)-cos(π)]*a^5/5=4πa^5/5.

高等数学计算三重积分计算三重积分下∫∫∫(D区域)(x^2+y^2)dxdydz,其中区域D由曲面z=[√(x^2+y^

首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角)