下列级数发散的是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:47:45
下列级数发散的是
关于级数敛散性的证明 证明级数 ((-1)^n )/((根号n)+(-1)^n)是发散的

首先,由Leibniz判别法,可知级数∑(-1)^n/√n收敛.两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n))=∑1/(√n(√n+(-1)^n)).这是一个正项级数,通项与1/

帮忙判断一下这个级数的是绝对收敛还是条件收敛还是发散?

考虑an=2^(n^2)/n!a1=2/1=2an+1/an=2^((n+1)^2)/(n+1)!/[2^(n^2))/n!]=2^[(n+1)^2-n^2]/(n+1)=2^(2n+1)/(n+1)

为什么n分之一的级数是发散n平方分之一的级数是收敛

给你一个好证明!我们计算一下取平面上的点使得两个坐标互素的可能性.记为p,那么坐标最大公约数是2的可能性是4p.同理有9p.加起来,用全概率是1,知道1/p=n平方分之一的级数和.因为p不为0所以收敛

设正项级数∑Un发散,Sn是Un的部分和数列,证明级数∑Un/Sn^2收敛.

正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

判定级数是收敛还是发散

发散.级数其实就是-1/(4n+1),与-1/n的敛散性相同,所以发散再问:用比较审敛法的极限形式,除以-1/n,等于1/4,又因为-1/n发散,所以原级数发散,对吧?再答:没错

.根据级数收敛与发散的定义判定下列级数的收敛性

sin∏/6+sin(2∏)/6+…….+sin(n∏)/6+…….是发散的,因为通项绝对值的极限不是0,不满足收敛的必要条件,所以直接得出结论:发散!1/3+1/3^(1/2)+1/3^(1/3)+

级数1/n+1是收敛的还是发散的?

如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.

判断下列级数是绝对收敛条件收敛还是发散

极限绝对值的那个东西除以n分之一为无穷大,下面发散所以上面发散.然后用莱布尼兹可求原级数收敛,故为条件收敛

一个收敛级数与一个发散级数之和为发散级数的理由?

假设它们的和为收敛级数,有两个收敛级数的和(差)为收敛级数可知,加上的那个级数是收敛的,故矛盾!

很简单的级数问题,级数(那个符号)1/5n是收敛还是发散

发散,因为形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是p=1的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).

证明 级数 ∑1/(nlnn) 是发散的

利用积分判别法可证:由于    ∫[2,+∞][1/(xlnx)]dx=(lnx)²|[2,+∞]=+∞,利用积分判别法可知该级数发散.

判断下列级数是绝对收敛,条件收敛,还是发散的?

1.(1)因为|(-1)^n/(2n+3)|=1/(2n+3)>1/(2n+n)=1/3n,而∑1/3n发散,由比较判别法知∑|(-1)^n/(2n+3)|发散;(2)而1/(2n+3)单调递减且li

高数级数习题,1 级数un=ln n/n^2 他是发散的还是收敛点?2 选择:设0≤un≤1/n 则下列级数一定收敛的是

再问:这是分开的两题........第二题和第一题无关.............能麻烦给下第二题的解答吗谢谢!

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

级数un是收敛还是发散

这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以

高数无穷级数问题,判别下列级数是绝对收敛,条件收敛还是发散.

2.|An|≤1/n^2级数1/n^2收敛,原级数绝对收敛3.|A(n+1)/An|=2/(1+1/n)^n趋于2/e