下半部分的下侧,曲面积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:10:01
下半部分的下侧,曲面积分
求平面x+y=1上被坐标面与曲面z=xy截下的在第一卦限部分的面积

面积A=∫∫dS,S的方程是x+y=1,即y=1-x,dS=√(1+1+0]dzdx=√2dzdx.求S在zOx面上的投影区域.x+y=1与zox面的交线是x=1.x+y=1与z=xy的交线在zOx面

重积分:由曲面z=根号下(x2+y2)及z=x2+y2所围成的立体体积

极坐标求解围成区域z1在上z2在下z1=√(x²+y²),z2=x²+y²令z1=z2√(x²+y²)=x²+y²即r=

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧

在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S.∵∫∫x³dydz+y³dzdx+z³dxdy=0(∵z=0,∴dz=

曲面积分 如图,画红线部分是如何转换成画黑线部分的?为什么符号也变了?

被积函数错了.括号内解释过了,曲面S的方程是z=0,代入被积分式中,只剩下了2xydxdy/√(x^2+y^2),因为取的是下侧,所以化成二重积分后取负号.

对面积的曲面积分与二重积分

楼上的解释只对了一半.曲面积分是指在被积函数在曲面上取值,也就是一楼所说的在曲面上进行.无论怎样进行,都是重积分,有些能化成二重积分,有的化成三重积分.如静电场中的高斯定理,用于球对称,还是柱对称,或

求积分yds L为心脏线r=1=cosθ的下半部分

等等,一会给你,我也算出和答案不一样,不知怎么回事,照片是过程,再问:我也是这个答案哎!再答:可能是答案有问题吧,做法又没有错,采纳吧啊啊

请问在曲线和曲面积分中,什么情况下可以将积分的边界方程代入积分的被积函数

都可以.注意:利用Green公式或者Gauss公式以后就不能带入边界方程了.

一道大学高等数学的曲线积分问题,详见问题补充,我用了下斯托克斯公式,然后曲面不会投影了,

知道斯托克斯公式就好办了.记S为曲线G在平面x+y+z=1上围出来的那一部分,(本题需要选择这个曲面容易计算)注意到S是一个圆,圆心在(1/3,1/3,1/3),半径为根号(6)/3面积是2pi/3.

曲面积分高斯公式的运用

你这个题目在求解过程中不能把x=0,y=0直接带入,从而把式子∫∫∫(x+y+z)dv化简为∫∫∫(z)dv因为都化成了三重积分了,不再是曲面积分了,曲面积分可以带入,但是只是局限于有一个曲面时,因为

高数,对坐标的曲面积分

∑在xoy面上的投影是圆周x^2+y^2=1,面积是0,所以dxdy=0,∫∫zdxdy=0.∑在yoz面上的投影是矩形区域:0≤z≤3,0≤y≤1,曲面取前侧,所以∫∫xdydz=∫(0到3)dz∫

第一型曲线积分,第二型曲线积分,第一型曲面积分,第二型曲面积分的物理意义分别是什么撒,能不能再简单说明下为什么,一直没搞

一类曲线是对曲线的长度,二类是对x,y坐标.怎么理解呢?告诉你一根线的线密度,问你线的质量,就要用一类.告诉你路径曲线方程,告诉你x,y两个方向的力,求功,就用二类.二类曲线也可以把x,y分开,这样就

高等数学重积分的应用 求由曲面z=x²+y²,z=根号下(2-x²-y²)所围成

消去z,(x^2+y^2)^2=2-(x^2+y^2),(x^2+y^2)^2+(x^2+y^2)-2=0,{(x^2+y^2)-1][(x^2+y^2)+2]=0,后者大于零,则x^2+y^2=1,

关于高数下 曲面积分的问题

为什么dS相等的问题,你说的dS=dydz/cosα是对的"关键"在于,关于α角的定义,α角为S的曲面法向量,与我们投影面法向量之间的夹角,比如此题:我们在分成了X负半轴,和正半轴两部分曲面(事实上可

曲面积分的题目,高斯公式

再答:我用的是球面坐标x=rsinφcosθ,y=rsinφsinθ,z=rcosφ体积元素为r^2sinφdrdφdθ这题目用球面坐标系作做好了。