1除以lnx的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:49:51
分步积分=0.5积分号lnxdx*x=0.5x*x*lnx-0.5x*x
Unexpectedlyonlymecanhelpyou?Don'tmindIsayEnglish.LetN=∫(e→+∞)f(x)dx,sincethisintegralisconvergent,i
用分步积分法,1/lnx当成dv,1当成u,带入公式算(刚帮你查了,上述方法不正确.该函数求导比较复杂,求出来的不是初等函数,所以暂时无法帮您解决问题)
设y=lnx则x=e^y1=e^0y=0e=e^1y=1dx=e^ydy所以∫ye^ydy[0,1]=ye^y-e^y+C[0,1]=(e-e)-(0-1)=1
原式={(1+lnx)d(lnx)=lnx+[(lnx)^2]/2=1-0+1/2-0=3/2
使用 分部积分 ... 但LS有错误:∫(lnx)^2dx = x(lnx)^2-∫x(2lnx)dx但即使这样,也做不出来这类有 对数,反
原式=-∫(lnx)²d(1/x)=-(lnx)²/x+∫(1/x)d(lnx)²=-(lnx)²/x+∫2lnx/x²dx=-(lnx)²
∫1/(x*lnx)dx=∫lnxdlnx=1/2*(lnx)^2
∫(0,1)lnxdx是一个瑕积分,其中x=0是瑕点.应该取x->0的极限来计算.∫(0,1)lnxdx=lim【a->0】xlnx|(1,a)-x|(1,a)而lim【a->0】xlnx=lnx/(
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)
解;∫(√1+lnx)/xdx=∫√1+lnxd(1+lnx)=∫√udu=2/3(1+lnx)^(3/2)+C
(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.
因为lnx在0处无定义,这是一个瑕积分,首先用分部积分法,下面[0,1]表示0为下限,1为上限∫[0,1]lnxdx=xlnx[0,1]-∫[0,1]x*(1/x)dx=0-∫[0,1]1dx=-1注
用分部积分法,设u=lnx,v'=1,u'=1/x,v=x,原式=x*lnx-∫(1/x)*xdx=xlnx-x+C.
分部积分∫sin(lnx)dx=∫sin(lnx)*(x)'dx=sin(lnx)x-∫(sin(lnx))'*xdx=sin(lnx)*x-∫cos(lnx)dx①继续将∫cos(lnx)dx分部积
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出