2 n tanx n的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:05:39
2 n tanx n的敛散性
判别级数∑(n+1)/2^n的敛散性

利用比值判别法可判别该级数收敛.为求和,作幂级数   f(x)=∑{n>=0}(n+1)x^n,|x|=0}(n+1)∫[0,x](t^n)dt  =∑{n>=0}x^(n+1)  =1/(1-x)-

判断级数lnn/(n^2+1) 的敛散性

ln(n)=o(n),即ln(n)远小于n.而n/(n^2+1)~n/n^2=1/n收敛于0,因此ln(n)/(n^2+1)收敛于0.如果你要说的是级数求和的收敛性,也是收敛的.ln(n)=o(n^(

判断级数 ∑ (sin n)/n^2的敛散性

很简单(sinn)/n^2≤1/n^2因为|sinn|≤1∑1/n^2绝对收敛,所以原级数也绝对收敛

怎么判断级数 n/2n-1 的敛散性

Un=n/(2n-1)lim(n→∞)Un=(1/n)/[2-(1/n)]=1/2即n→∞时数列有极限1/2所以级数n/(2n-1)收敛您的采纳是我前进的动力~

判断 n^2/(3n^2+1) 的敛散性、

敛limit=1/3再问:是级数问级数的敛散性。过程呢。再答:散becauselimit=1/3if敛.lima_n=0

判定级数ntan (π\2∧n+1)的敛散性

答:limn->∞u(n+1)/u(n)=limn->∞[(n+1)tan(π/2^(n+2))]/[ntan(π/2^(n+1))]又当t->0时,tant~t=limn->∞[(n+1)(π/2^

级数-1的n次方×n/(2n+1)的敛散性

发散啊,不满足级数收敛的必要条件.

级数(1/n) × sin(πn/2)的敛散性

该级数实为1,0,-1/3,0,1/5,0,-1/7,0,……,1/4t,0,-1/(4t+2),0,……我们将1/4t,0,-1/(4t+2),0的和组成一项有an=1/4n-1/(4n+2)=1/

判断下列级数的敛散性 1/(2的n次方+n)

因为lim(n->∞)[1/(2^n+n)]/(1/2^n)=1而Σ1/2^n收敛所以原级数收敛.

求正项级数1/(lnn)^2的敛散性

n充分大时lnn^21/n而级数∑1/n是发散的所以该级数发散

求级数lnn/(n^2)的敛散性

(lnn/n^2)/(1/n^(3/2))=lnn/n^(1/2),用罗必达法则,该式趋于0.因级数1/n^(3/2)收敛,由比较判别法,原级数收敛.再问:那为什么不可以这样呢?(lnn/n^2)/(

判断.级数 ( ∞∑n=1 )((n+1/2)的根号-n的根号)的敛散性

分子有理化,(n+1/2)的根号-n的根号,化为0.5/[(n+1/2)的根号+n的根号],大于等于0.25/(n+1/2)的根号,不收敛再问:大于等于0.25/(n+1/2)的根号这一步没看懂再答:

求级数的敛散性 ∑1/2+n的平方 n趋于∞

收敛的根据申敛定理有对任意An有abs(An)

级数的敛散性的两道题

图片点开到网页就清楚了 祝愉快

讨论级数的敛散性

比较n·(1+ln^2n)>n·ln^2n,然后取倒数对n从2到无穷积分,可知是收敛的再问:有没有具体点的过程再答:过程有,但是这个上面不好写

无穷级数 根号n-1/4的根号下(n^2+n)的敛散性

级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因    √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要

1/2^n+1/2n的敛散性,求大神

收敛再问:过程。。谢谢。再答:再问:答案是发散。。再答:抱歉再答:有正确答题过程吗再问:没有。只有一个答案。真心不会判断啊再答:再答:因为1+1/2+1/3+…+1/n+…=ln(n+1)+r,r为常

判定级数的敛散性

1/ln(n+1)>1/(n+1),级数1/(n+1)发散,所以级数1/ln(n+1)发散.