不定积分(lnx)平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:08:52
不定积分(lnx)平方
lnx的原函数是多少?(lnx求不定积分)

xlnx-x+c分部积分法∫lnxdx=xlnx-∫xdlnx=xlnx-∫dx=xlnx-x+c

不定积分(1-lnx)dx/(x-lnx)^2

x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-

(lnx)^2的不定积分

分部积分法S表示积分号S(lnx)^2dx=x(lnx)^2-S2lnxdx=x(lnx)^2-2xlnx+2x+CC为常数

求分子是lnx,分母是(x的平方+1)的3/2次方,这个函数的不定积分

以下过程我将会说英文,高中生应该具备理解英文的能力噢.∫lnx/(x²+1)^(3/2)dx=∫lnxd[∫dx/(x²+1)^(3/2)]=∫lnxd[x/√(x²+1

求(1-lnx)dx/(x-lnx)^2的不定积分

1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x

不定积分[(x*lnx)^(3/2)]*(lnx+1)dx

S[(x*lnx)^(3/2)]*(lnx+1)dx=S[(x*lnx)^(3/2)]*(xlnx)'dx=S[(x*lnx)^(3/2)]*d(xlnx)=1/(1+3/2)*(x*lnx)^(1+

不定积分 ∫ dx/(x*lnx)

∫dx/(x*lnx)=∫(1/x)dx/lnx=∫d(lnx)/lnx=ln(lnx)+C

lnx/根号x不定积分

∫lnx/√xdx=2∫lnxd√x=2lnx√x-2∫1/√xdx=2lnx√x-4√x+C

cos(lnx)dx,不定积分

∫cos(lnx)dx分部积分=xcos(lnx)+∫xsin(lnx)(1/x)dx=xcos(lnx)+∫sin(lnx)dx再分部积分=xcos(lnx)+xsin(lnx)-∫cos(lnx)

不定积分x的平方x(1+lnx)dx=

你应该说的是∫(x^x)(1+lnx)dx=∫[e^(xlnx)](1+lnx)dx=∫[e^(xlnx)]d(xlnx)=e^(xlnx)+c=x^x+c

求(lnx-1)/(lnx)^2的不定积分,

∫(lnx-1)/ln²xdx=∫1/lnxdx-∫1/ln²xdx=x/lnx-∫xd(1/lnx)-∫1/ln²xdx=x/lnx-∫x*-1/ln²x*1

(lnx/根号x)dx不定积分

dx^(1/2)=(1/2)x^(-1/2)dx∫x^(-1/2)lnxdx=2∫lnxdx^(1/2)

x*(lnx)^2的不定积分

用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的

求不定积分lnx/1+x平方dx 分子lnx分母1加x平方

(我用F表示积分符号,^2表示平方)Flnx/(1+x^2)dx=Fxlnx/(lnx+x^2lnx)dx=1/2Fd(lnx+x^2lnx)/(lnx+x^2lnx)-2F(1/x+x)/(lnx+

求不定积分∫lnx/x√1+lnx dx

∫lnx/[x√(1+lnx)]dx令t=√(1+lnx),则lnx=t^2-1,x=e^(t^2-1),代入得∫lnx/[x√(1+lnx)]dx=∫lnx/[√(1+lnx)]d(lnx)=∫(t

求不定积分ln(lnx)+1/lnx

∫[ln(lnx)+1/lnx]*dx=∫ln(lnx)*dx+∫1/lnx*dx=xln(lnx)-∫x*d(ln(lnx))+∫1/lnx*dx=xln(lnx)-∫x*1/lnx*1/x*dx+

∫lnx/2 求不定积分

∫ln(x/2)dx=xln(x/2)-∫x*[ln(x/2)]'dx=xln(x/2)-∫x*1/(x/2)*(1/2)dx=xln(x/2)-∫dx=xln(x/2)-x+C

lnx的三次方比上x平方的不定积分

设lnx=t,x=e^t,dx=e^tdtS(lnx)^3/x^2dx=St^3/e^(2t)*e^tdt=St^3e^(-t)dt=-St^3d[e^(-t)]=-[t^3*e^(-t)-Se^(-