不定积分1 X×根号9-X²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:45:45
令(1-x)/x=t^2,则:1-x=xt^2,∴(1+t^2)x=1,∴x=1/(1+t^2),∴dx=[2t/(1+t^2)^2]dt.∴∫{1/√[x(1-x)]}dx=∫{[(1-x)+x]/
令√x=tx=t^2dx=2tdt原式=∫2tdt/(1+t)=2∫[1-1/(1+t)]dt=2t-2ln(1+t)+C
$x[(x)^(1/2)+1)]dx=$[(x^(3/2)+x]dx=(5/2)*x^(5/2)+x^2/2(积分号9到4)=(5/2)*(9)^(5/2)+(9)^2/2-(5/2)*(4)^(5/
用分步积分法∫ln(x+1)/√xdx=2∫ln(x+1)d√x=2ln(x+1)*√x-2∫√xdln(x+1)=2ln(x+1)*√x-2∫√x/(x+1)dx对于∫√x/(x+1)dx令√x=t
再答:������˼���ҿ����ˡ��ڶ������һ���Ⱥź����Ϊ(t^3+1)-1�ٷ���?����(t^3-1)+1��
用t代换根号x再答:
可以用换元法解此题.令x=t^6则有原式=∫6t^5/(t^3+t^2)dt=∫6t^3/(t+1)dt然后将t^3分解为t+1的多项式,求出积分后将X=t^6代入则得结果
∫x^3/√(1-x^2)dxletx=sinydx=cosydy∫x^3/√(1-x^2)dx=∫(siny)^3dy=-∫(siny)^2dcosy=-∫[1-(cosy)^2]dcosy=(co
∫lnx/√xdx=2∫lnxd√x=2lnx√x-2∫1/√xdx=2lnx√x-4√x+C
欢迎追问哦!亲再问:�Ǹ���������ӻ��и�X再答:������˼����������Ŀ�ˣ����¥�µ���ʾ������һ�£�
答:∫(1/√x)e^(√x)dx=2∫(1/2√x)*e^(√x)dx=2∫e^(√x)d(√x)=2e^(√x)+C
令x^(1/6)=u,则x=u^6,dx=6u^5du,√x=u³,x^(1/3)=u²∫1/[x^(1/2)-x^(1/3)]dx=∫6u^5/(u³-u²)
这是用了一个常用的公式,推理如下
∫1/[x√(1-x²)]dx=∫1/[x*√[x²(1/x²-1)]dx=∫1/[x*|x|*√(1/x²-1)]dx=∫1/[x²√(1/x
∫1/[√x(1+x)]=∫1/(2√x)]=1/2∫1/√x=1/2∫(2√x)/√xd√x=1/2∫2d√x=∫d√x=√x再问:为什么你和答案不一样..再答:答案是什么?我那个还可以化的,因为我