不定积分arctanx x^2(1 x^2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:09:08
再问:大神?哪里搞得电子版?再答: 满意解答吗?若不满意,请追问;若满意,请采纳为《满意答案》。谢谢。再问:满意谢谢啊
分部积分法S表示积分号S(lnx)^2dx=x(lnx)^2-S2lnxdx=x(lnx)^2-2xlnx+2x+CC为常数
∫(sint·cost)²dt=∫(½·sin2t)²dt=1/4·∫(sin2t)²dt=1/4·∫(1-cos4t)/2dt=1/8·∫(1-cos4t)d
求二阶导f‘'(x)=6x+6,求零点得x=-1,并且-1点两边二阶导数符号不一样,所以x=-1是拐点,并且(-∞,-1)是凸区间,(-1,+∞)是凹区间.积分区域如图,确定一个x,求出高是x
∫(x^2-1)sin2xdx先括号拆开=∫x^2*sin2xdx-∫sin2xdx=-1/2*∫x^2dcos2x-1/2*∫sin2xd2x先凑微分=-1/2*∫x^2dcos2x-1/2*∫si
用分部积分,设u=arctanx,v'=1/x^2u'=1/(1+x^2),v=-1/x,原式=-(arctanx)/x+∫dx/[x(1+x^2)]=-(arctanx)/x+∫(-x)dx/(1+
∵∫arctanxx2(1+x2)dx=∫arctanx(1x2−11+x2)dx=∫arctanxx2dx−∫arctanx1+x2dx=−∫arctanxd(1x)−∫arctanxd(arcta
∫arcsinx/×2DX=-∫arcsinxd(1/x)的=-(1/x)的*arcsinx+∫(1/X)D(arcsinx)=-arcsinx/X+∫(1/X)*[1/√(1-X2)]DXX=圣马丁
原式=∫[1-(sinx)^2]/sinxdx=∫cscxdx-∫sinxdx=ln|cscx-cotx|+cosx+c
原式=∫(x+1)/x²+∫xlnxdx=∫x/x²+∫1/x²+1/2∫lnxdx²=∫1/x+∫1/x²+1/2*x²lnx-1/2∫x
∫xsinx/cos²xdx=∫xsecxtanxdx=∫xdsecx=xsecx-∫secxdx=xsecx-ln|secx+tanx|+C
∫dx/x^2=∫x^(-2)*dx=1/(-2+1)*x^(-2+1)+C=-1/x+C
即√x√x*x^(1/2)=√x√[x^(3/2)]=√[x*x^(3/4)]=√[x^(7/4)]=x^(7/8)所以就是幂函数所以原式=x^(7/8+1)/(7/8+1)+C=8x^(15/8)/
非初等积分,表示为一个椭圆函数:=sqrt(1+sin(x))*sqrt(-2*sin(x)+2)*sqrt(-sin(x))*EllipticF(sqrt(1+sin(x)),(1/2)*sqrt(
等于sinxdx再问:具体过程再答:直接等于啊再问:不定积分再问:再答:满意答案再问:求解题过程再问:图片已发再答:再答:再答:图片发不出再答:嘿嘿再答:嘿嘿,能聊几句吗?昨天我回答你的试题,是因为我
用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的
∫x/(sinx)^2dx=-∫xdcotx=-xcotx+∫cotxdx=-xcotx+ln|sinx|+C满意请好评o(∩_∩)o
答案如图所示,刚才有个错误,重传了一个答案.这里不考虑x使得分母为零的情况了,因为在分母为零处积分不存在
∫[(cosx)∧2]sinxdx=-∫(cosx)∧2d(cosx)=-(cosx)∧3/3+C