不定积分x*根号x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:14:22
∫ln(1-√x)dx=xln(1-√x)+(1/2)∫√x/(1-√x)dx=xln(1-√x)-(1/2)∫(1-√x-1)/(1-√x)dx=xln(1-√x)-(1/2)x+(1/2)∫1/(
令(1-x)/x=t^2,则:1-x=xt^2,∴(1+t^2)x=1,∴x=1/(1+t^2),∴dx=[2t/(1+t^2)^2]dt.∴∫{1/√[x(1-x)]}dx=∫{[(1-x)+x]/
∫arctan√xdx=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx=xarctan√x-1/2*∫√x/(1+x)*dx(令√x=t,则x=t^2,dx=2tdt)=xa
令√x=tx=t^2dx=2tdt原式=∫2tdt/(1+t)=2∫[1-1/(1+t)]dt=2t-2ln(1+t)+C
用分步积分法∫ln(x+1)/√xdx=2∫ln(x+1)d√x=2ln(x+1)*√x-2∫√xdln(x+1)=2ln(x+1)*√x-2∫√x/(x+1)dx对于∫√x/(x+1)dx令√x=t
∫lnx/√xdx=2∫lnxd(√x)分部积分=2√xlnx-2∫√x/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+C希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮
∫x^3/√(1-x^2)dxletx=sinydx=cosydy∫x^3/√(1-x^2)dx=∫(siny)^3dy=-∫(siny)^2dcosy=-∫[1-(cosy)^2]dcosy=(co
∫lnx/√xdx=2∫lnxd√x=2lnx√x-2∫1/√xdx=2lnx√x-4√x+C
欢迎追问哦!亲再问:�Ǹ���������ӻ��и�X再答:������˼����������Ŀ�ˣ����¥�µ���ʾ������һ�£�
1/x是lnx的导数,所以1/xdx=d(lnx).∫ln(√x)/xdx=1/2×∫lnxdlnx=1/2×1/2×(lnx)^2+C
dx^(1/2)=(1/2)x^(-1/2)dx∫x^(-1/2)lnxdx=2∫lnxdx^(1/2)
令√(x+1)=u,则:x=u^2-1,∴dx=2udu.∴∫[x/√(x+1)]dx=2∫[(u^2-1)/u]udu=2∫u^2du-2∫du=(2/3)u^3-2u+C=(2/3)(x+1)√(
这是用了一个常用的公式,推理如下
∫1/[x√(1-x²)]dx=∫1/[x*√[x²(1/x²-1)]dx=∫1/[x*|x|*√(1/x²-1)]dx=∫1/[x²√(1/x
4*x^(1/2)4倍根号X
∫1/[√x(1+x)]=∫1/(2√x)]=1/2∫1/√x=1/2∫(2√x)/√xd√x=1/2∫2d√x=∫d√x=√x再问:为什么你和答案不一样..再答:答案是什么?我那个还可以化的,因为我
分步积分法原式=xarctan√x-∫xdarctan√x=xarctan√x-∫x/(1+x)dx=xarctan√x-∫(x+1-1)/(1+x)dx=xarctan√x-∫[1-1/(1+x)]