不定积分x^2 * lnx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:55:25
不定积分x^2 * lnx
不定积分 (x+(lnx)^3) / (xlnx)^2

设x=e^t,dx=e^tdt,lnx=t不定积分(x+(lnx)^3)/(xlnx)^2dx=(e^t+t^3)/(te^t)^2e^tdt=不定积分(1/t^2)dt+不定积分te^(-t)dt=

不定积分(1-lnx)dx/(x-lnx)^2

x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-

(lnx)^2的不定积分

分部积分法S表示积分号S(lnx)^2dx=x(lnx)^2-S2lnxdx=x(lnx)^2-2xlnx+2x+CC为常数

求不定积分:∫(lnx)/(x^1/2)dx=

原式=-∫lnxd(1/x)=-lnx*1/x+∫1/x*dlnx【分部积分】=-lnx/x+∫1/x²dx=-lnx/x-1/x+C再问:答案是错的哦,还有=-∫lnxd(1/x)不是应该

求不定积分∫e^(-2x^2+lnx)dx

∫e^(-2x²+lnx)dx=∫e^(-2x²)*e^lnxdx=∫e^(-2x²)*xdx=∫e^(-2x²)d(x²/2)=(1/2)(-1/2

求(lnx-1)/x^2的不定积分

∫(lnx-1)/x²dx=-∫(lnx-1)d(1/x)=-[(lnx-1)/x-∫1/xd(lnx-1)]=-(lnx-1)/x+∫1/x²dx=-(lnx-1)/x-1/x+

求不定积分(lnx/1+x^2)dx.

分母是1+x^2,分子是Lnx,积分就没有显式  .

求不定积分∫lnx/x^2 dx

运用分部积分法可∫lnx/x²dx,首先将1/x²推进d里,这是积分过程=∫lnxd(-1/x),然后互调函数位置=-(lnx)/x+∫1/xd(lnx),将lnx从d里拉出来,这

求(1-lnx)dx/(x-lnx)^2的不定积分

1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x

求不定积分∫(lnx)^3/x^2

∫(lnx)^3/x^2dx=∫(lnx)^3d(-1/x)=-(lnx)^3/x+∫3(lnx)^2(1/x)(1/x)dx=-(lnx)^3/x-3∫(lnx)^2d(1/x)=-(lnx)^3/

不定积分[(x*lnx)^(3/2)]*(lnx+1)dx

S[(x*lnx)^(3/2)]*(lnx+1)dx=S[(x*lnx)^(3/2)]*(xlnx)'dx=S[(x*lnx)^(3/2)]*d(xlnx)=1/(1+3/2)*(x*lnx)^(1+

不定积分 ∫ dx/(x*lnx)

∫dx/(x*lnx)=∫(1/x)dx/lnx=∫d(lnx)/lnx=ln(lnx)+C

lnx/根号x不定积分

∫lnx/√xdx=2∫lnxd√x=2lnx√x-2∫1/√xdx=2lnx√x-4√x+C

(2-lnx)/x^2 的不定积分

拆开然后利用分部积分∫(2-lnx)/x²dx=∫2/x²dx+∫lnxd(1/x)=-2/x+(lnx)/x-∫1/x²dx=-2/x+(lnx)/x+1/x+C

(lnx/根号x)dx不定积分

dx^(1/2)=(1/2)x^(-1/2)dx∫x^(-1/2)lnxdx=2∫lnxdx^(1/2)

x*(lnx)^2的不定积分

用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的

不定积分1/(lnx-x)+(1-x)/(x-lnx)^2dx

采用分部积分了!因为∫[dx/(lnx-x)+(1-x)dx/(x-lnx)^2]=∫dx/(lnx-x)+∫x(1/x-1)dx/(x-lnx)^2=∫dx/(lnx-x)+∫xd(lnx-x)/(

不定积分 ∫(1+lnx)/(x+lnx)^2dx ,跪谢!

上下同时处以x^2,∫[(1+lnx)/x^2]/[(x+lnx)/x]^2dx=∫1/[(x+lnx)/x]^2d[(x+lnx)/x],这就变成了∫1/ada型,结果为ln|a|+c,将a换掉即可

求不定积分:(x^2分之lnx)

用分部积分法来做∫(lnx)/x^2dx=-∫(lnx)d(1/x)=-lnx/x+∫1/xd(lnx)=-lnx/x+∫1/x^2dx=-lnx/x-1/x=-(1+lnx)/x+C(C为常数)