2-tan(x-y)=∫ sec∧2tdt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:39:26
2-tan(x-y)=∫ sec∧2tdt
几道微积分题目!1.求微分方程y'=y ln y的通解.2.求微分方程3e^x tan y dx+(2-e^x)(sec

y'=ylnydy/(ylny)=dx两边积分得lnlny=x+C分离变量得3e^x/(2-e^x)dx=-(secy)^2/tanydy两边积分得-3ln(2-e^x)=-lntany+C分离变量得

tan^2x+1=sec^2x怎么记住

tan^2x+1=sin^2x/cos^2x+1=(sin^2x+cos^2x)/cos^2x=1/cos^2x=sec^2x

第一题 求y=x,y=2x和y=x^2所围平面图形的面积,第二题 若2x-tan(x-y)=∫ sec^tdt,求dy/

求由y=x,y=x²和y=x²所围成的平面图形的面积?交点:(0,0),(1,1),(2,4)A=∫(0→1)[(2x)-(x)]dx+∫(1→2)[(2x)-(x²)]

∫(tan^(5)(x)*sec^(4)(x))dx

先用凑微分法凑sec2x,再用三角公式∫(tanx)^5*(secx)^2*(secx)^2dx=∫(tanx)^5*(1+(tanx)^2)dtanx=(1/8)(tanx)^8+(1/6)(tan

如果y=|sin x+cos x+tan x+cot x+sec x+cscx| 那么y的最小值是多少?

|sinx+cscx|≥2√(sinxcscx)=2,|cosx+secx|≥2√(cosxsecx)=2,|tanx+cotx|≥2√(tanxcotx)=2,y=|sinx+cosx+tanx+c

若2x-tan(x-y)=∫上面是(x-y)下面是0,里面是sec(c上有指数2)(tdt),求dy/dx,请给出过程.

这个题目把后面的定积分解出来就可以了吧sec(t)平方的积分=tan(t)所以∫上面是(x-y)下面是0,里面是sec(c上有指数2)(tdt)=tan(x-y)-tan(0)=tan(x-y)所以2

∫tan^2xdx=∫(sec^2x-1)dx

∫tan^2xdx=∫(sec^2x-1)dx=∫sec^2xdx-∫1dx=tanx-t+C

帮忙解一道高数题y=ln(sec x + tan x)求“y=ln(sec x + tan x)”的导数

y'=[1/(secx+tanx)]*(secx+tanx)'而(secx+tanx)'=(1/cosx+sinx/cosx)'=[(1+sinx)/cosx]'=[sinx(1+sinx)+cosx

设y=In(sec X+tan X ),求y'

=(secX+tanX)'/(secX+tanX)=(secxtanx+sec²x)/(secX+tanX)=secx(tanx+secx)/(secX+tanX)=secx

sec x-tanx怎么能化简成2/(1+tan(x/2)),

secx-tanx化简成2/(1+tan(x/2))?这个显然不成立.利用特殊值即可判断取x=0,则secx-tanx=1-0=0而2/(1+tan(x/2))=2/(1+0)=2∴secx-tanx

请问 设y=y(x)有方程2x-tan(x-y)=∫上限x-y下限0 [sec(t)]^2d所确定,求d^2y/dx^2

2x-tan(x-y)=∫(0,x-y)[sec(t)]^2dt两边对x求导得:2-sec²(x-y)(1-y')=sec²(x-y)(1-y')sec²(x-y)(1-

lim (sec x - tan x) limit是x->(pi /2 )-

学过求导没有,用洛必达法则可以解因为分子和分母在x趋近于pi/2-的时候都趋近于零分别对分子分母求导,得出分子等于-cos,分母等于-sin那么就是说这个极限等价于lim(ctg(x))x->pi/2

sec^2 x-1 =tan^2 x 怎么来的啊

tan²x=(sin²x)/(cos²)=(1-cos²)/(cos²)=(1/cos²x)-(cos²)/(cos²)

y=sec^2x+csc^2x求导

y=(secx)²+(cscx)²y'=2secx*secxtanx+2cscx*(-cscxcotx)=2(secx)²tanx-2(cscx)²cotx主要

证明sec x+tanx=tan(π/4 +x/2)

secx+tanx=1/cosx+sinx/cosx=(1+sinx)/cosxtan(π/4+x/2)=[tanπ/4+tan(x/2)]/[1-tan(x/2)]=[1+tan(x/2)]/[1-

三角函数 sec(2a)=sec^a/1-tan^a

证明:(1)∵seca=1/cosatana=sina/cosa∴sec²a/(1-tan²a)=1/cos²a/(1-sin²a/cos²a)=1/

x属于[-pai/6,pai/4],求函数Y=(sec x)^2+tan x+2的最值

因为x∈[-π/6,π/4],所以tanx∈[-√3/3,1].令u=tanx,u∈[-√3/3,1].因为(secx)^2-(tanx)^2=1,所以(secx)^2=u^2+1.所以y=f(u)=

∫sec^4x dx ∫sec^2x tan^2x dx

sec^4x=sec^2x*(1/cos^2x)=sec^2x*tan^2x*(1/sin^2x)=sec^2x*tan^2x*csc^2x所以原题∫sec^4xdx=∫sec^2xtan^2x*cs

y=tan(e^x)求导 最后答案是sec^2(e^x)*e^x但不知道过程,

1.复合函数求导八字原则:由外向里,逐层求导.注意一点,别漏层.y'=[tan(e^x)]'=sec^2(e^x)(e^x)'=sec^2(e^x)*e^x2.y'=2*x/(1+x^2),二导应该是