两个同心均匀带电球面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:29:27
带电量为Q,半径为R.均匀带电球面内外场强及电势分布内部场强E=0球外部等效成球心处一点电荷E=KQ/r^2r>R电势相等球外部等效成球心处一点电荷Φ=KQ/r如果是均匀带电球体,结果与球壳相同
B均匀带电球面,电场是对称分布的,高斯面的选取就选和带电球面同球心的球面,这样高斯面上的各点的场强大小相等,方向沿着球半径,也就是各点的球面法向方向.高斯面的电场强度通量Φe=∮E×dS(矢量积分)=
/>根据问题的球对称性,电场沿径向,在距球心r半径处取一球面,利用高斯定理,此球面上的电场积分和其所包围的内球壳所带的电荷Q有关系:∮E•dS=4πr²E=Q/εo故E=Q/(4
E=kQ/r^2U=E/qUab=φa-φb450v=Q/r^2450=Q/r^2Q=2.205
高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明
正确的解法应该是完整均匀带电球面的电势(整个球体是等势的)减去ds上的电荷单独存在时在球心处产生的电势——kq/r-k[q(ds/πrr)]/r.你大概是没算kq/r而只算k[q(ds/πrr)]/r
两球面间的电势差为:k(q2/R-q1/r)在大学物理中k用1/(4πε0)表示.
整个球面以及内部空间是等势体,电势与一带电量为q的点电荷在距离为r的点产生的电势相等.U=q/(4πεr)具体来说,用积分做,电场强度E=q/(4πεr^2),球表面的电势为E从r到无穷远点对r的积分
电荷只会分布在球面上,不管是球壳还是实心球.根据高斯定理,球面内部电场强度为0再问:电荷是分布在球面上,但是也应该有电场分布啊,为什么只有球外有电场球内没有呢?再答:高斯定理。。。再问:高斯定理是“E
简单啊,场强叠加5cm:0+0=020cm:0+1.0*10负8次方/(4*Pi*epsilon*0.2*0.2)50cm:1.0*10负8次方/(4*Pi*epsilon*0.5*0.5)+1.5*
本题中的电荷分布具有球对称性,因而计算电场时可以用电场的高斯定理,电场对半径分别为3cm,6cm,8cm处的闭合球面积分得到E1*(4πr1^2)=0;E2*(4πr2^2)=q1/ε;E3*(4πr
这个简单(Q1+Q2)/(4*PI*episilon*R2)再问:你确定不?我也是这么想的、但是有学习好的同学跟我的不一样、她们的好复杂的再答:绝对确定,如果他们复杂,可能是通过电场去积分的,不需要
根据电场的高斯定律,电场强度在空间内任意封闭曲面上的面积分值,等于该曲面内电荷量的总和与空间介电常数ε的比值.即:∮EdS=∫(ρ/ε)dV现在我们可以假设最简单的情况,空间内只有一个带电的金属球(电
带电同心球壳?再问:是的,带电的同心球壳再答:小于r1为0,大于r1小于r2为q1/ε,大于r2为(q1+q2)ε
V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了
利用均匀带电球面内部的电势为常数,以及电势连续性、叠加原理,可知,U(P)=Q1/(4πε0·R1)+Q2/(4πε0·R2)
1.用高斯定律求出两球壳间的电场强度,很简单:积分EdS=Q,E=[1/(4πε0)]×(Q/r²)2.电势:U=积分Edl,积分限R1到R2,因为外球壳接地,电势为0.电场和电势的值都与r
因为内部为等势面,△φ为零,所以电场强度E=0