两个无限大的均匀带电平面,电荷面密度分别为,,则两平面间的电场强度大小为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:00:13
两个无限大的均匀带电平面,电荷面密度分别为,,则两平面间的电场强度大小为
一道大学物理静电场题一无限大均匀带电平面A,其附近放一与它平行的且有一定厚度的无限大平面导体B.已知A上的电荷面密度为+

无限大的均匀带电平板A周围的电场强度是E=σ/ε(运用高斯定理可得).而B板和A板将在静电引力作用下产生静电感应,即远离A板的那面电荷为零,与A板对应的那面和A板上一样,但方向相反!想一下电容器就能明

电荷面密度为p的均匀带电无限大平面外一点电场强度大小表达式为什么是p/2ε

取一圆柱形高斯面,其底面与该平面平行大小为S.根据高斯定理(φ=q/ε)和对称性(上下两个底面),2ES=pS/ε,所以E=p/2ε再问:对称性是个什么?还有就是不懂那个2ES再答:根据对称性,平面两

一层厚度为d的无限大平面,均匀带电,电荷体密度为p,求薄层内外的电场强度分布

高斯定理做外面是pd/2ε0里面距离中心层x位置差场强px/2ε0

电场一"无限大"均匀带电平面A,其附近放一与它平行的有一定厚度的"无限大"平面导体板B,已知A上的电荷密度为+x;,则在

首先要理解电通量的定义,通过某一曲面的电通量=场强和面积元点积的遍及被考虑曲面的面积分,也即=垂直于某一面积元的场强法向分量与面积元乘积的积分.清楚了定义后,针对题目画个图.任意划出一条电场线,中间有

(11分)有两块无限大的均匀带电平面,一块带正电,一块带负电,单位面积所带电荷量的数值相等.现把两带电平面正交放置如图所

其实既然你都作出了第一问,第二问应该不难啊,你想想,单独一个平面产生的电场是个什么样的电场?如果是一个带正电电荷的话,它的电场是不是就是往外发散的球,负电荷则是向内聚拢的.你再想想平行板电容在不是板边

三个平行的“无限大”均匀带电平面,电荷面密度都是+σ

每一个“无限大”均匀带电平面,在空间产生的电场强度为σ/(2ε0),三个平面把空间分成四部分,根据场强叠加原理,四部分空间的场强从左到右分别是:3σ/(2ε0),方向向左;σ/(2ε0),方向向左;σ

真空中两块互相平行的无限大均匀带电平面,其电荷密度分别为和,两板间的电场强度为

电荷密度没打出来呢?比如分别为+σ1和+σ2.设电荷面密度为+σ1的为板A,电荷面密度为+σ2的为板B.A板产生的场强大小为E1,根据其对称性,对板A取一圆柱形高斯面,高斯面截面积为s根据高斯定理∮E

两块无限大均匀带电平面,已知电荷面密度为正负O,计算场强分布,

取高斯面S,ES=4πkOS/ε,E=4πkO/εls的单位ms不对.

无限大均匀带电平面周围的场强,无论距离平面多远都相等吗?

是相等的.我之前没细想,习惯思维,说错了.根据高斯定理可知是相等的.虽然距离远的点受到平面上的点的力更小,但是受到了平面上更大范围的点的力的作用的影响,加起来发现还是相等的.

一道大学物理题 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ1和σ2,试求空间各处场强.

用高斯定理∮EdS=q/ε,可以设计一个这样的则得2ES=Sσ/εE=σ/2ε,这是平面的场强公式,然后空间的就只需要叠加一下就行了,加加减减什么的再问:能给下具体步骤吗再答:我去这还不具体啊。平行板

A、B 为真空中两个平行的“无限大”均匀带电平面……具体题目在图中

根据高斯定理解E=d/e0E为射出高斯体的“净”电场强度,d为面电荷密度,e0为真空介电常数.当高斯体包括两个板时,射出高斯体的“净”电场强度为E0*2/3,所以E0*2/3=(dA+dB)/e0.当

大学物理-有一“无限大”均匀带电荷密度为 的平面,若设平面所 在处为电势零点,取x轴垂直带电平面

1、首先,x>0时,对E积分所得的电势是负的.2、dl的方向是有l的方向决定的,因为它是l向量的微量.3、当x向量为x正方向时,dx就为正的,x向量为负方向时,dx就为负的.所以,跟x有关.还因为x有

电荷面密度为σ的无限大的均匀带电平面周围空间的电场强度推导

运用高斯定理的话,十分简单..将左式中的dS积分后移到右边,E=σ/2ε0(2ε0就是2).但问题是你懂微积分不?

无限大均匀带电平面周围的场强相等?

对.根据高斯定理E*2S=入*S/真空介质常量E=入/2*真空介质常量与距离无关的(仅限于无限大平面)相信我.希望能帮助你~!

设有一无限大均匀带电平面 电荷面密度为 σ求据平面一定距离处电场强度

对称性.等距离处上下两个表面对通量有贡献,2ES包含的电荷量σS因此2ES=σS/ε匀强电场,与距离无关.

求距离均匀带电无限大平面(电荷密度已知)为a处的P处的电场强度

如果电荷密度为p则E=p/2e0,其中e0为介电常数,与距离无关这个要用高斯定律或者微积分推导

两个无限大的平行平面均匀带电,电荷面密度分别为+-σ,如果板的面积是S,则两板间作用力F=?

F=Eq=σ/(2*episilon)*σ*S,注意要用单板场强再问:其实我知道答案是这个,就是为什么用单板场强啊?再答:这个太简单了,这块板为什么会受力,是因为它放入了对方的场中,自己的场对自己是没

两个平行的“无限大”均匀带电平面,其电荷面密度分别为+σ和+2σ求各个区域的电场强度.

两板之间用大的减小的,因为两板对这里场强方向相反.两板的左边和右边都是相加两板各自对其场强相加,原因是场强方向相同.无限大带点平板场强与距离无关.各处均为σ除以2e.{我晕,那个k=1/(4π*e.)

两个无限大均匀带等量异号电荷的平行平面间的场强如何求?外侧呢?

无限大俩平板间找不到边界,没有外侧一说.场强跟带电量以及两板距离有关.再问:。。。。。。。还没有外侧了又不是二维的是三维的再答:额,外侧在无穷远处为零,在无穷远处看平板看做点,成平方减小,在较近距离看