两个无限大的均匀带电平面,电荷面密度分别为,,则两平面间的电场强度大小为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:00:13
无限大的均匀带电平板A周围的电场强度是E=σ/ε(运用高斯定理可得).而B板和A板将在静电引力作用下产生静电感应,即远离A板的那面电荷为零,与A板对应的那面和A板上一样,但方向相反!想一下电容器就能明
取一圆柱形高斯面,其底面与该平面平行大小为S.根据高斯定理(φ=q/ε)和对称性(上下两个底面),2ES=pS/ε,所以E=p/2ε再问:对称性是个什么?还有就是不懂那个2ES再答:根据对称性,平面两
高斯定理做外面是pd/2ε0里面距离中心层x位置差场强px/2ε0
首先要理解电通量的定义,通过某一曲面的电通量=场强和面积元点积的遍及被考虑曲面的面积分,也即=垂直于某一面积元的场强法向分量与面积元乘积的积分.清楚了定义后,针对题目画个图.任意划出一条电场线,中间有
其实既然你都作出了第一问,第二问应该不难啊,你想想,单独一个平面产生的电场是个什么样的电场?如果是一个带正电电荷的话,它的电场是不是就是往外发散的球,负电荷则是向内聚拢的.你再想想平行板电容在不是板边
每一个“无限大”均匀带电平面,在空间产生的电场强度为σ/(2ε0),三个平面把空间分成四部分,根据场强叠加原理,四部分空间的场强从左到右分别是:3σ/(2ε0),方向向左;σ/(2ε0),方向向左;σ
电荷密度没打出来呢?比如分别为+σ1和+σ2.设电荷面密度为+σ1的为板A,电荷面密度为+σ2的为板B.A板产生的场强大小为E1,根据其对称性,对板A取一圆柱形高斯面,高斯面截面积为s根据高斯定理∮E
取高斯面S,ES=4πkOS/ε,E=4πkO/εls的单位ms不对.
是相等的.我之前没细想,习惯思维,说错了.根据高斯定理可知是相等的.虽然距离远的点受到平面上的点的力更小,但是受到了平面上更大范围的点的力的作用的影响,加起来发现还是相等的.
用高斯定理∮EdS=q/ε,可以设计一个这样的则得2ES=Sσ/εE=σ/2ε,这是平面的场强公式,然后空间的就只需要叠加一下就行了,加加减减什么的再问:能给下具体步骤吗再答:我去这还不具体啊。平行板
根据高斯定理解E=d/e0E为射出高斯体的“净”电场强度,d为面电荷密度,e0为真空介电常数.当高斯体包括两个板时,射出高斯体的“净”电场强度为E0*2/3,所以E0*2/3=(dA+dB)/e0.当
1、首先,x>0时,对E积分所得的电势是负的.2、dl的方向是有l的方向决定的,因为它是l向量的微量.3、当x向量为x正方向时,dx就为正的,x向量为负方向时,dx就为负的.所以,跟x有关.还因为x有
运用高斯定理的话,十分简单..将左式中的dS积分后移到右边,E=σ/2ε0(2ε0就是2).但问题是你懂微积分不?
对.根据高斯定理E*2S=入*S/真空介质常量E=入/2*真空介质常量与距离无关的(仅限于无限大平面)相信我.希望能帮助你~!
对称性.等距离处上下两个表面对通量有贡献,2ES包含的电荷量σS因此2ES=σS/ε匀强电场,与距离无关.
如果电荷密度为p则E=p/2e0,其中e0为介电常数,与距离无关这个要用高斯定律或者微积分推导
F=Eq=σ/(2*episilon)*σ*S,注意要用单板场强再问:其实我知道答案是这个,就是为什么用单板场强啊?再答:这个太简单了,这块板为什么会受力,是因为它放入了对方的场中,自己的场对自己是没
两板之间用大的减小的,因为两板对这里场强方向相反.两板的左边和右边都是相加两板各自对其场强相加,原因是场强方向相同.无限大带点平板场强与距离无关.各处均为σ除以2e.{我晕,那个k=1/(4π*e.)
无限大俩平板间找不到边界,没有外侧一说.场强跟带电量以及两板距离有关.再问:。。。。。。。还没有外侧了又不是二维的是三维的再答:额,外侧在无穷远处为零,在无穷远处看平板看做点,成平方减小,在较近距离看