两个独立二维正态分布相减

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:32:56
两个独立二维正态分布相减
两个独立正态分布随机变量的线性组合还是正态分布,为什么?

两个独立正态分布随机变量的联合分布是二维正态分布,而二维正态分布的随机向量的线性组合还依然服从正态分布从而,……再问:为什么两个独立正态分布随机变量的联合分布是二维正态分布再答:独立,联合概率密度等于

这道题(U,V)是服从正态分布的二维随机变量,为什么X Y独立就等价于X Y不相关

亲.这是定义,当分布为正态分布时,二者就是等价的再答:根据你的表达式,xy也是正太,再答:不懂可以追问再问:只要是二维正态分布独立和不相关就一定等价?再问:那个行列式等于零XY就不是二维正态分布吗,能

两个独立正态分布相减(u,d2)Y~(u,2d2)他的方差为多少我算是Z~(0,3d2)为什么考研数学1最后一题答案都是

如果你没写错题目的话,答案是错的,你是对的,因为方差值可以直接相加.为了验证这一点,我特意在SPSS上做了一个模拟实验:利用随机数发生器产生第一组正态分布的随机数X(共有10000个随机数),平均值设

两个独立的、服从正态分布的随机变量,它们的差的分布?

方差都是相加的.如果X,Y独立,一定有D(X±Y)=D(X)+D(Y)再问:会不会答案错了??按照相减计算会得出书后的答案再答:那有可能是答案错了,D(X±Y)=D(X)+D(Y)是独立的随机变量的方

概率论问题:如何证明两个分别满足正态分布的随机变量的联合分布满足二维正态分布?

正态分布的任意线性变换仍是正态分布,(X,Y)可以写成(U,V)线性变化形式,你给出的系数矩阵就是线性变换的系数矩阵

设二维随机变量(x,y)服从二维正态分布,其概率密度1/50π证明X与Y相互独立详见图片 求X,Y是否独立

f(x)=[(50pi)^(-1/2)]e^(-x^2)f(y)=[(50pi)^(-1/2)]e^(-y^2)f(x,y)=f(x)f(y)X与Y相互独立.再问:这样好像不对吧,有解题过程吗?再答:

二维正态分布公式exp的意义?

……那个其实就是e的多少多少次方,就是说exp(x)=e^x这里e是自然对数的底,约为2.718281828……

两个独立样本t检验,如果样本非正态分布怎么办?用spss

1.通过F检验可以看到方差是否相等,你说的对的,看第二行2.样本标准差可以使用描述统计中的功能来计算,例如descpritivestatistics3.如果样本数量30以上,可以当作正态分布.如果是小

两个独立的正态分布相加减 得到的还是正态分布么

是的只有相互独立的时候相加减得到的才能是正态分布

关于matlab的二维正态分布

xcorr计算自相关;fft求取相关的傅里叶变换即可得到功率谱密度,具体用法请查阅matlab自带的帮助文档.

matlab如何产生二维正态分布随机数

matlab上有现成的函数,函数名称为:mvnrnd(mu,sigma,cases,t)帮助文件如下MVNRNDRandomvectorsfromthemultivariatenormaldistri

概率论二维正态分布求概率密度问题!

①如果已知联合概率密度为f(x,y),则求Y的边缘概率密度f(y)=∫Rf(x,y)dx,即联合概率密度函数对于x在-∞到+∞上的积分!②正态分布的概率密度函数是p(x)={1/[σ√(2π)]}*e

两个变量都服从标准正态分布,方差不同,独立吗

两个变量都符合标准正态分布了.怎么个就方差不同呢?标准正态分布N(0,1),期望E=0,方差D=1也就说,两个变量都符合标准正态分布了,就期望和方差都相同了.叫同分布.楼主的问题应该是,两个变量都符合

两个相互独立但是相同的正态分布相减得到什么样的分布?

因为X,Y独立,所以Var(X-Y)=Var(X)+Var(Y)=2∑(∑^2)=2(∑^2)一般的,如果∑(大写,不是小写的σ)出现,它代表的就是方差阵:)

两个一维正态分布的协方差为0,他们是独立的吗

是独立的,有个定理,两组数据X,Y,如果存在D(X)和D(Y),如果R=cov(x,y)/√[D(x)D(y)]=0那么他们就是独立的.之所以说不相关未必独立,就是因为数据可能D(X)或D(Y)不存在

两个正态分布相互独立是两个正态分布的线性函数也是正态分布什么条件

两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数

二维正态分布函数二维正态分布的函数服从二维正态分布

当然也可用辅助函数法(二重积分换元)直接得出倒数第三行的公式.