两个独立同分布变量方差

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:02:18
两个独立同分布变量方差
概率论中两个独立的随机变量其差的方差为什么等于方差的和?

还有一个公式D(kX)=k²D(X)所以D(X-Y)=D(X)+D(-Y)=D(X)+(-1)²D(Y)=D(X)+D(Y)

如何理解概率论中的独立同分布?请分别解释独立、同分布及独立同分布.

我用最简单的抛色子给你当做例子来理解(1)独立就是每次抽样之间是没有关系的,不会相互影响就像我抛色子每次抛到几就是几这就是独立的但若我要两次抛的和大于8,其余的不算,那么第一次抛和第二次抛就不独立了,

如何深刻理解概率论中的独立同分布?请分别解释独立、同分布及独立同分布.

独立:A,B是两个随机变量,只要它们满足P(AB)=P(A)P(B),它们就是相互独立的.还有一种理解比较直观,但是不太全面——相互之间发生与否互不影响的两个时间相互独立.同分布:分布相同的随机变量就

n个服从几何分布的独立同分布随机变量,加起来之后的方差怎么求?

几何分布期望为5的话,其参数p=1/5=0.2,对应单个随机变量方差DX=(1-p)/p^2=20从而DY=DX/n=20/n

关于连续随机变量.已知变量X和Y是独立的,且均在[0,1]上均匀分布,现有Z=XY,求Z的方差和分布方程.

Z=XY,f(z)=∫f(x,y)dx=∫f(x)f(y)dx=∫(1/x)f(x)f(z/x)dx=∫(1/x)f(z/x)dx---z/x=t---->=∫(z-->1)(1/t)dt=Ln(1/

概率论问题:同分布的两个随机变量如果不相关,是否独立?可以的话请给证明一下

设两个变量为X、Y,对应的事件为A、B(1)当X、Y均服从0、1分布,即X={1,A发生;0,A不发生};Y={1,A发生;0,A不发生};写出X、Y、XY的分布列,因为X、Y不相关,则cov(X,Y

随机变量相互独立,且有相同期望和方差,是否说明同分布

不一定,题目中不是没有说同分布吗?随便构造就行了比如X1服从入=1泊松,E(X1)=D(X1)=1,让X2服从N(1,1),不就有相同期望和方差了嘛

随机变量相互独立跟独立同分布有什么不一样?

随机变量相互独立是指若干随机变量仅仅满足相互独立的条件;随机变量相互独立且具有相同分布不仅满足相互独立的条件,还满足分布都相同的条件再问:�ֲ���ͬ��ʲô��˼����再答:���������зֲ

概率中的独立同分布有没有非独立的同分布?即是说,两个随机变量不是独立的,但它们的分布相同?有的话,请举例说明.没有请帮忙

我是卖衣服的,售出价格是按照进价定的,赔本的买卖,原价出售不赚钱.那么进价的分布和售价的分布必然是相同的,而且它们不独立.比如30%的货物进价为100元,70%的货物进价为200元,那么必然有30%的

知道两个变量的方差,如何求它们的协方差?

随机变量X,Y协方差cov(X,Y)=ρ*√D(X)√D(Y),其中ρ是X,Y的相关系数,D(X),D(Y)是X,Y的方差.或者还可以由定义式来求:cov(X,Y)=E[(X-EX)(Y-EY)]=E

假设X、Y都服从独立同分布的指数分布,则max(X,Y)服从什么分布呢?如何求其期望、方差

E(x+y)=Ex+Ey=1/5+3/5=0.8D(x+y)=Dx+Dy+cov(xgy)=1/25+9/25+cov(xrvzdy)需要知道xky的协方差2若相互独立

两个变量都服从标准正态分布,方差不同,独立吗

两个变量都符合标准正态分布了.怎么个就方差不同呢?标准正态分布N(0,1),期望E=0,方差D=1也就说,两个变量都符合标准正态分布了,就期望和方差都相同了.叫同分布.楼主的问题应该是,两个变量都符合

随机变量X1 X2 ...Xn 独立同分布 同分布是不是说这些变量的方差 期望都相等?

独立同分布是说随机变量之间相互独立,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.

辛钦大数定律的问题在辛钦大数定律中,n个独立同分布的随即变量相加再除n ,n个变量相加再除于n得不出具体数来啊,可是既然

意思就是n越大,这n个独立同分布的随机变量的平均值,就越接近它们所服从分布的数学期望.

设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )

cov(X1,Y)=1/n·∑(i=1~n)cov(X1,Xi)=1/n·cov(X1,X1)=(λ^2)/n所以,选A再问:cov(X1,X2),cov(X1,X3),cov(X1,X4)…cov(

独立同分布 和期望与方差是相同的 这两个概念是不是同一个意思

同分布意味着期望和方差相同,但反过来不成立.毕竟期望和方差只是一阶矩和二阶矩,还有更高阶的矩存在.因此同分布事实上是很强的条件,更不必说是独立了

随机变量X,Y独立且同分布.服从于N(0,1/2).求|X-Y|的期望与方差

Z=X-Y服从N(0,1).E(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)E(|Z|^2)=E(Z^2)=D(z)=1D(|z|)=1-2/π