两个独立同分布变量方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:02:18
还有一个公式D(kX)=k²D(X)所以D(X-Y)=D(X)+D(-Y)=D(X)+(-1)²D(Y)=D(X)+D(Y)
我用最简单的抛色子给你当做例子来理解(1)独立就是每次抽样之间是没有关系的,不会相互影响就像我抛色子每次抛到几就是几这就是独立的但若我要两次抛的和大于8,其余的不算,那么第一次抛和第二次抛就不独立了,
独立:A,B是两个随机变量,只要它们满足P(AB)=P(A)P(B),它们就是相互独立的.还有一种理解比较直观,但是不太全面——相互之间发生与否互不影响的两个时间相互独立.同分布:分布相同的随机变量就
几何分布期望为5的话,其参数p=1/5=0.2,对应单个随机变量方差DX=(1-p)/p^2=20从而DY=DX/n=20/n
Z=XY,f(z)=∫f(x,y)dx=∫f(x)f(y)dx=∫(1/x)f(x)f(z/x)dx=∫(1/x)f(z/x)dx---z/x=t---->=∫(z-->1)(1/t)dt=Ln(1/
设两个变量为X、Y,对应的事件为A、B(1)当X、Y均服从0、1分布,即X={1,A发生;0,A不发生};Y={1,A发生;0,A不发生};写出X、Y、XY的分布列,因为X、Y不相关,则cov(X,Y
不一定,题目中不是没有说同分布吗?随便构造就行了比如X1服从入=1泊松,E(X1)=D(X1)=1,让X2服从N(1,1),不就有相同期望和方差了嘛
随机变量相互独立是指若干随机变量仅仅满足相互独立的条件;随机变量相互独立且具有相同分布不仅满足相互独立的条件,还满足分布都相同的条件再问:�ֲ���ͬ��ʲô��˼����再答:���������зֲ
我是卖衣服的,售出价格是按照进价定的,赔本的买卖,原价出售不赚钱.那么进价的分布和售价的分布必然是相同的,而且它们不独立.比如30%的货物进价为100元,70%的货物进价为200元,那么必然有30%的
随机变量X,Y协方差cov(X,Y)=ρ*√D(X)√D(Y),其中ρ是X,Y的相关系数,D(X),D(Y)是X,Y的方差.或者还可以由定义式来求:cov(X,Y)=E[(X-EX)(Y-EY)]=E
E(x+y)=Ex+Ey=1/5+3/5=0.8D(x+y)=Dx+Dy+cov(xgy)=1/25+9/25+cov(xrvzdy)需要知道xky的协方差2若相互独立
相等的,根据同分布就可知道
两个变量都符合标准正态分布了.怎么个就方差不同呢?标准正态分布N(0,1),期望E=0,方差D=1也就说,两个变量都符合标准正态分布了,就期望和方差都相同了.叫同分布.楼主的问题应该是,两个变量都符合
独立同分布是说随机变量之间相互独立,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.
意思就是n越大,这n个独立同分布的随机变量的平均值,就越接近它们所服从分布的数学期望.
cov(X1,Y)=1/n·∑(i=1~n)cov(X1,Xi)=1/n·cov(X1,X1)=(λ^2)/n所以,选A再问:cov(X1,X2),cov(X1,X3),cov(X1,X4)…cov(
同分布意味着期望和方差相同,但反过来不成立.毕竟期望和方差只是一阶矩和二阶矩,还有更高阶的矩存在.因此同分布事实上是很强的条件,更不必说是独立了
Z=X-Y服从N(0,1).E(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)E(|Z|^2)=E(Z^2)=D(z)=1D(|z|)=1-2/π