两个相互独立的正态分布相减得到的方差和期望是什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:57:24
两个独立正态分布随机变量的联合分布是二维正态分布,而二维正态分布的随机向量的线性组合还依然服从正态分布从而,……再问:为什么两个独立正态分布随机变量的联合分布是二维正态分布再答:独立,联合概率密度等于
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件同时发生的概率P(A*B)=P(A)*P(B)你指的前者可能是指这两个事件与任何事件都没有联系而处于
N(0,1)N(1,1)XY独立所以X+Y和X-Y都是服从正态分布的而且E(X+Y)=EX+EY=1,D(X+Y)=DX+DY=2所以X+Y~N(1,2)所以P(X+Y=0)=Φ((0-1)/√2)=
根据正态分布的性质,易知:X+Y,X-Y均服从正态分布,根据数学期望与方差的性质:E(X+Y)=E(X)+E(Y)=1,D(X+Y)=D(X)+D(Y)=2,E(X-Y)=E(X)-E(Y)=-1,D
注意到Y-1也是N(0,1)与同分布,即是求P[3X+4(Y-1)
联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z
联合分布函数F(x,y)=F(x)*(y)或密度函数p(x,y)=p(x)*p(y)
分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-
他们的对立事件不一定是相互独立的.例如全事件为ABC,(假如ABC相互独立),则A补为B并C,B补为A并C.显然A补与B补不独立.
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
是的只有相互独立的时候相加减得到的才能是正态分布
因为X,Y独立,所以Var(X-Y)=Var(X)+Var(Y)=2∑(∑^2)=2(∑^2)一般的,如果∑(大写,不是小写的σ)出现,它代表的就是方差阵:)
因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2
1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+
是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).
两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数