两个相互独立的正态分布相减得到的方差和期望是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:57:24
两个相互独立的正态分布相减得到的方差和期望是什么
两个独立正态分布随机变量的线性组合还是正态分布,为什么?

两个独立正态分布随机变量的联合分布是二维正态分布,而二维正态分布的随机向量的线性组合还依然服从正态分布从而,……再问:为什么两个独立正态分布随机变量的联合分布是二维正态分布再答:独立,联合概率密度等于

概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

两个事件独立和相互独立的差别

事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件同时发生的概率P(A*B)=P(A)*P(B)你指的前者可能是指这两个事件与任何事件都没有联系而处于

概率统计学.设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1)则.A,P{X+Y

N(0,1)N(1,1)XY独立所以X+Y和X-Y都是服从正态分布的而且E(X+Y)=EX+EY=1,D(X+Y)=DX+DY=2所以X+Y~N(1,2)所以P(X+Y=0)=Φ((0-1)/√2)=

设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则(  )

根据正态分布的性质,易知:X+Y,X-Y均服从正态分布,根据数学期望与方差的性质:E(X+Y)=E(X)+E(Y)=1,D(X+Y)=D(X)+D(Y)=2,E(X-Y)=E(X)-E(Y)=-1,D

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X/Y的概率密度.

联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z

两个随机变量相互独立的条件

联合分布函数F(x,y)=F(x)*(y)或密度函数p(x,y)=p(x)*p(y)

设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-

两个相互独立事件的对立事件是相互独立事件吗

他们的对立事件不一定是相互独立的.例如全事件为ABC,(假如ABC相互独立),则A补为B并C,B补为A并C.显然A补与B补不独立.

两个独立的正态分布相加减 得到的还是正态分布么

是的只有相互独立的时候相加减得到的才能是正态分布

两个相互独立但是相同的正态分布相减得到什么样的分布?

因为X,Y独立,所以Var(X-Y)=Var(X)+Var(Y)=2∑(∑^2)=2(∑^2)一般的,如果∑(大写,不是小写的σ)出现,它代表的就是方差阵:)

X与Y是两个相互独立同分布且他们都服从标准正态分布,则X^2/(X^2+Y^2)的期望是多少

因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+

相互独立的正态分布函数相加减,还是正态分布么?均值和方差的是怎样的?

是,比方书X服从N(a,b),Y服从N(c,d)那么X+Y服从N(a+b,c+d)X-Y服从N(a-b,c+d).

两个正态分布相互独立是两个正态分布的线性函数也是正态分布什么条件

两个独立正态分布的随机变量的线性组合仍服从正态分布.这是二维正态分布的边缘分布(不需要独立)的线性组合服从正态分布的特殊情况.因为若X,Y服从相互独立的正态分布,则(X,Y)服从二维正态分布(密度函数