两正态变量相加期望方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:02:36
期望:可以看做是平均值,方差:用来度量随机变量和其数学期望(即均值)之间的偏离程度.
X(i):第i次抽取时卡片的号,则E(X(i))=(1+2+...+n)/n;D(X(i))=E(X^2(i))-E(X(i))=(1^2+2^2+...+n^2)/n-(1+2+...+n)/n又X
1.X=A+B=Xw+X(1-w)资产构成的期望收益率=EX=EXw+EX(1-w)=0.1w+0.3(1-w)=0.3-0.2w2资产构成的方差Dx=DXw^2+DX(1-w)^2=0.01w^2+
常数的平方还是常数,期望类似平均值,那C平方的期望不就是c平方?这里把c看成变量是为了后面求导,你可以把c看成变换的常数就好理解了再问:这个证发是先把c看成变量的。这道题,你有别的方法吗再答:可以作差
Dξ=(x1-Eξ)^2·p1+(x2-Eξ)^2·p2+……+(xn-Eξ)^2·pn=(x1)^2·p1-2x1p1Eξ+(Eξ)^2+…………+(xn)^2·pn-2xnpnEξ+(Eξ)^2p
解题思路:见解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php
原始数据:x1,x2,...,xnx的数学期望:Ex=[∑(i=1->n)xi]/n(1)x的方差:D(x)=[∑(i=1->n)(xi-Ex)²]/n(2)x的方差:D(x)还等于:D(x
完整回答:1.)不难想像,数学期望是n(1+N)/2.因为取一次的数学期望是(1+N)/2,取n次的和的期望自然是n(1+N)/2;2.)取一次的方差是(N^2-1)/12,因为这是一个均匀离散分布.
二项分布b(n,p)期望np方差np(1-p)几何分布G(p)期望1/p方差(1-p)/(pXp)
若X为离散型随机变量,其概率分布为P(X=xk)=pk(k=1,2,…),则称和数sum(PK)为随机变量X的数学期望,简称期望,记为E(X)若X为连续型随机变量,其概率密度为f(x),则X的数学期望
http://tieba.baidu.com/p/1230477642
1.令Y=X+3,则Y~N(1,0.16);因此EY^2=D(Y)+(EY)^2=0.4^2+1=1.162.D(3X-Y)=9D(X)+D(Y)=9*0.6+2=7.43.从密度函数看服从正态分布,
你现在是上高中吗?这些可能你们还没学过,反正我是到大学才学的,X1是均匀分布,X2是正态分布,X3是指数分布,它们的期望都可由参数直接读出,最后的结果则直接由期望的线性性质求出.
期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn方差的公式:D=(X1-E)的平方*P1+(X2-E)的平方*P2+(X3-E)的平方*P4+.+(Xn-E)的平方*Pn
期望EX=10*0.5+9*0.3+8*0.1+7*0.05+6*0.05=5+2.7+0.8+0.35+0.3=9.15(变量x的取值乘以各自取值的概率之和)方差DX.在计算方差之前先求平均值y=(
独立同分布是说随机变量之间相互独立,而且分布函数相同.既然分布函数相同,因此只要期望,方差是有限值,就必然是一样的.
解题思路:记住期望(平均数)公式、方差公式,并会用它们来计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
假定投资者将无风险的资产和一个风险证券组合再构成一个新的证券组合,投资者可以在资本市场上将以不变的无风险的资产报酬率借入或贷出资金.在这种情况下,如何计算新的证券组合的期望报酬率和标准差?假设投资于风