两直线ab cd相交于点o ,已知oe平分角bod,且角aoc:角aod=3:7
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:55:14
证明:在平行四边形ABCD中,OD=OB,OA=OC,AD∥CB,(1分)∴∠OBG=∠ODE.(2分)又∵∠BOG=∠DOE,∴△OBG≌△ODE.(4分)∴OE=OG.(5分)同理OF=OH.(6
我觉得,你还是证明对角线垂直平分比较好点只要证明FO=HO就可以了因为EO=GO同理所以用角边角证明△HDO≡△FBO10步左右就搞定了
在平行四边形ABCD中,OD=OB,OA=OC,AB∥CD∴∠OBG=∠ODE又∵∠BOG=∠DOE∴△OBG≌△ODE∴OE=OG同理OF=OH∴四边形EFGH是平行四边形又∵EG⊥FH∴四边形EF
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
∵四边形ABCD是平行四边形,∴AB∥DC,∠GAO=∠HCO,∠AGO=∠CHO,AO=CO,∴△AGO≌⊿CHO,∴OG=OH,同理OE=OF,∴四边形EGFH是平行四边形.
证明:因为AD平行BC,所以角AEO=角CFO,角EAO=角FCO,而OA=OC所以三角形AEO全等于三角形CFO所以OE=OF
过O做AD平行线分别交AB,CD与M,N.由于BC平行AD,AD平行于MN,O为平行四边形ABCD中点.所以O评分EF,即OE=OF,又因为BO=BD,角FOD和角EOB为对顶角,所以两角相等.所以三
证明:∵平行四边形ABCD∴∠BAD=∠BCD,AB=CD,∠ABD=∠CBD∵AF⊥BD,CE⊥BD∴AF∥CE∵AF平分∠BAD∴∠BAF=∠BAD/2∵CE平分∠BCD∴∠DCE=∠BCD/2∴
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠BPF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=
因为四边形ABCD是平行四边形,所以AC和BD互相平分,所以BO=DO,又角EDO=角FBO角BOF=角DOE所以三角形BOF全等于三角形DOE,所以EO=FO.同理可证三角形BOG全等于三角形DOH
⑴当P点在AB上时:∵正方形边长=√2,对角线AC=√2×√2=2,∴AO=BO=1,∴正方形面积=2,∴△AOB的面积=2/4=½,连接PO,则△APO面积+△BPO面积=△ABO面积=&
由题意得:AB=AO=OC=CD,连接OP,则OP为AB中位线,所以:OP∥AB,OP=(1/2)AB=(1/2)OC=OF;显然三角形ABO与三角形COD为等腰三角形,所以∠POD=∠ABO=∠AO
因为;四边形ABCD为平行四边行所以;OB=ODAD//BC所以;角ADB=角DBC又因为;角EOD=角BOF所以;三角形EOD全等于三角形BOF所以;OE=OF
由题意知ao=bo,两条对角线相等,则可知平形四边形是一个长方形.根据题意已知,ab=2,ac=2ab=4∠bac=60°sin60°=二分一倍根号3(这里显示不了根式)=bc/acbc=ac×二分一
因为平行四边形ABCD的两条对角线相交于点O,且三角形AOB是等边三角形,AB=2cm;求得S△ABO=S△CDO=1/2(2*2)SIN120°=根号3又因为S△ACO=S△BDO=1/2(2*2)
矩形(长方形)三角形AOB是等边三角形,所以AO=BO,而BO=DO,所以AO=DO,因为角AOB=60°,所以角AOD=180°-60°=120°,又因为AO=DO,所以角DAO=角ADO=30°,
∵三角形aob是等边三角∴∠aob=60°=∠bao,ao=bo∵平行四边形两条对角线互相平分∴ao=do∵∠aod=180°-60°=120°∴∠dao=30°∴∠bad=∠aob+∠dao=90°
第一题:∵AO=BO ∴∠1=∠2 而AB‖CD;则∠1=∠4,∠2=∠3,所以∠3=∠4,则CO=DO,所以AC=BD,而在⊿ACD和⊿BCD中,CD共边
如果是梯形AB边平行于CD边,则有三角形AOB相似与三角形CODo顶点上下对顶角相等,其余2角是内错角,三角都相等,所以相似