(C) 若vn un=1 , 则 收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:13:09
(C) 若vn un=1 , 则 收敛
【急】讨论级数∑(∞ n=1)[(-1)^(n+1)][sin(π/n+1)/π^(n+1)]的敛散性,若收敛是条件收敛

老弟,这是基本的正项级数比较敛散法的运用,你需要加油啊.通项取绝对值,然后容易知道通项sin(π/n+1)/π^(n+1)

高数!关于级数的!若级数an(n=1到无穷)条件收敛,则幂级数anx^n(n=1到无穷)的收敛区间是?答案给的是(-1,

收敛区间指的是开区间.x=1时,∑anx^n条件收敛,所以收敛半径是1,收敛区间是(-1,1).

若幂级数∑an(x-1)^n在x=-1处收敛,则此级数在x=2处(绝对收敛)

根据阿贝尔定理,级数在x=-1处收敛,则适合(-1,3)的一切x使该级数绝对收敛,x=2也在其中.

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

若级数Un收敛于s 则级数(un+un+1)收敛于

由   ∑(n>=1)u(n)=s,可得   ∑(n>=1)[u(n)+u(n+1)]  =∑(n>=1)u(n)+∑(n>=1)u(n+1)  =2s-u(1).再问:(Un+Un+1)=(u1+u

若级数∑Un收敛于S,级数∑【un+un+1】则收敛于

∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始

判断它是否收敛,若收敛,收敛与多少

不收敛,因为第n+1项与第n项的比值是大于1的,每一项的极限是1,级数是趋于无穷大的.再问:为什么要考虑第n+1和第n项比值?每一项极限是1?不会吧再答:考虑级数收敛与否常用的一个方法就是比较连续两项

判断级数∑(∞ n=2) -1^n/2^n-1的敛散性,若收敛,是绝对收敛,还是条件收敛,为什么

∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n

若级数an(x-1)^n在x=0处收敛则级数在x=2de的收敛性 若级数an^2(x-1)^n在x=-1处收敛则级数在x

收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

关于幂函数求收敛区间幂函数∑ An(x+1)^ n在x=3条件收敛,则该幂级数的收敛区间为( )(-5,3) 请问为什么

中心在x=-1,在x=3条件收敛,所以收敛半径为4.关于-1为中心,半径为4的区间.

判断级数∑(n从1到∞)(-1)^n/根号(n(n+1))是否收敛 若收敛是条件收敛还是绝对收敛

条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑

设正项级数∑(n=1→∞)Un收敛,C是常数,则下列选项中级数必收敛的是 高手来~不能证明举个反例也可

讲个大概.ΣUn收敛,则由收敛必要性得通项Un趋于0(当n趋于无穷时).所以从某一项开始Un

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可

级数:绝对收敛+条件收敛=条件收敛,为什么?

首先,收敛是肯定的.那就不是条件就是绝对了,如果是绝对收敛,那么绝对1+条件1=绝对2条件1=绝对2-绝对1事实上绝对收敛的无论是级数,积分还是什么相加减的话结果都是依旧绝对收敛的,所以矛盾了.只能是

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

不是有一条定理是这样说吗 若级数收敛,则极限为0.可是下面的级数的极限为1,怎么还说它收敛呢?

级数收敛,则通项的极限是0.级数收敛的定义:级数的前n项和的极限存在时,称级数收敛.这里用到的是级数收敛的定义.再问:������ì����һ��˵����ͨ��Ϊ0��һ��˵���޴�������