(C) 若vn un=1 , 则 收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:13:09
老弟,这是基本的正项级数比较敛散法的运用,你需要加油啊.通项取绝对值,然后容易知道通项sin(π/n+1)/π^(n+1)
设M为{bn}的上界则|bn|
收敛区间指的是开区间.x=1时,∑anx^n条件收敛,所以收敛半径是1,收敛区间是(-1,1).
根据阿贝尔定理,级数在x=-1处收敛,则适合(-1,3)的一切x使该级数绝对收敛,x=2也在其中.
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
那我就只说明收敛吧.证明:a1
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
不收敛,因为第n+1项与第n项的比值是大于1的,每一项的极限是1,级数是趋于无穷大的.再问:为什么要考虑第n+1和第n项比值?每一项极限是1?不会吧再答:考虑级数收敛与否常用的一个方法就是比较连续两项
∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n
收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
中心在x=-1,在x=3条件收敛,所以收敛半径为4.关于-1为中心,半径为4的区间.
条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑
讲个大概.ΣUn收敛,则由收敛必要性得通项Un趋于0(当n趋于无穷时).所以从某一项开始Un
不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可
首先,收敛是肯定的.那就不是条件就是绝对了,如果是绝对收敛,那么绝对1+条件1=绝对2条件1=绝对2-绝对1事实上绝对收敛的无论是级数,积分还是什么相加减的话结果都是依旧绝对收敛的,所以矛盾了.只能是
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
级数收敛,则通项的极限是0.级数收敛的定义:级数的前n项和的极限存在时,称级数收敛.这里用到的是级数收敛的定义.再问:������ì����һ��˵����ͨ��Ϊ0��һ��˵����������