(I-A)的逆矩阵展开式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:38:30
(I-A)的逆矩阵展开式
若n阶矩阵A满足A的三次方等于3A(A-I),证明I-A可逆,并求(I-A)的逆矩阵

A^3=3A^2-3A-A^3+3A^2-3A=0-A^3+3A^2-3A+I=I(I-A)^3=I所以,(I-A)[(I-A)^2]=I,即(I-A)(A^2-2A+I)=I,所以I-A可逆,且逆矩

使用公式法求解下面矩阵A的逆矩阵,

第一步,求出矩阵A的伴随矩阵A*.第二步,求出矩阵A对应行列式的值|A|.第三步,矩阵A的逆矩阵=A*×(1/|A|).再问:能否帮我做出来?我这不明白再答:是不会哪一步?伴随矩阵的求法:伴随矩阵就是

矩阵A的逆矩阵乘以矩阵B和矩阵B乘以矩阵A的逆矩阵 结果相等吗

A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律

求三阶矩阵A的逆矩阵C语言算法程序

#include<stdio.h>#include<math.h>#definen3//三阶矩阵#defineN20#defineerr0.0001voidmain(){int

已知矩阵B和AB求A的逆矩阵

令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^

已知矩阵A求A的逆矩阵A-1,

这个是最简单的逆矩阵了,在右边加上单位矩阵14102701用矩阵的行变化,使左边变为1001这时右边就是A的逆矩阵,结果是-742-1

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

矩阵的特征多项式的展开式是什么形式?是如何推出的?需要具体的过程

你这个应该是可以应用到更高阶的,无需假定是3阶,可以假定到n阶因为对称多项式一定有n个根(重根按重数算)故可将特征多项式设为.|λE-A|==(λ-λ1)(λ-λ2)...(λ-λn)这个里面,较易求

设矩阵A,B均可逆,求分块矩阵(0,A;B 0)的逆矩阵,

设分块矩阵(0,A;B0)的逆矩阵为(C,D;EF)则(C,D;EF)(0,A;B0)=(DB,CA;FBEA)是分块单位矩阵于是DB=I,CA=O,FB=O,EA=I由A,B可逆,得D=B^(-1)

若N阶矩阵满足A*A-2A-4I=0,试证A+I可逆,并求(A+I)的逆矩阵

题目告诉你(A+I)(A-3I)=I即A+I可逆且其逆为A-3I

一道矩阵的题,已知一个25*25的矩阵A,A^4=0(0矩阵),求(I-A)是否存在逆矩阵

当然.法一.因为满足条件的矩阵A特征值只能是0,从而I-A特征值全是1,均非零.故I-A可逆.法二.由已知条件A^4=0,故(I-A)(I+A+A^2+A^3)=I-A^4=I,故I-A可逆,且其逆为

线性代数问题设方阵A满足A的k次方幂等于零矩阵,k为正整数.证明I+A可逆,并求(I+A)的逆矩阵

因为(E+A)(E--A+A^2--A^3+.+(--1)^(k--1)A^(k--1))=E+(--1)^(k--1)A^k=E,第一个等号是你按照分配率乘开后发现中间的项全消掉了.因此E+A可逆,

设A是n阶矩阵,若A满足矩阵方程A*A-A+I=0,证明:A和I-A都可逆,并求它们的逆矩阵

A*A-A+I=0所以A*(A-I)=-I所以|A*(A-I)|=|A|*|A-I|=|A|*|I-A|=|-I|0所以|A|,|I-A|都不等于0,所以A和I-A都可逆

已知矩阵A的逆矩阵A

因为A-1A=E,所以A=(A-1)-1.因为|A-1|=-14,所以A=(A-1)-1=2321.  …(5分)于是矩阵A的特征多项式为f(λ)=.λ−2−3−2λ−1.=λ2-

a+b的n次方公式展开式?

杨辉三角:111121133114641…………其中第一行代表(a+b)的零次方展开式1每项的系数.第二行代表(a+b)的一次方展开式a+b每项的系数.第三行代表(a+b)的二次方展开式a^2+2ab

矩阵可逆的定义和推论《线代》上,逆矩阵的定义:对于n阶矩阵A,如果存在矩阵B,使得AB=BA=I,那么A称为可逆矩阵,而

因为在定义的时候并不知道AB=E就意味着BA=E,也就是说矩阵的乘法运算一般不具有交换性,因此AB和BA不一定相等.所以在定义逆矩阵的时候就要求AB和BA都是E才行.只不过后面才证明了如果AB=E,则