(sint)^2*(cost)^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:24:14
(sint)^2*(cost)^2
(sint cost)^2 的不定积分

∫(sint·cost)²dt=∫(½·sin2t)²dt=1/4·∫(sin2t)²dt=1/4·∫(1-cos4t)/2dt=1/8·∫(1-cos4t)d

x=(e^t)sint y=(e^t)cost 求d^2y/dx^2

dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d

设x=1+t^2、y=cost 求 dy/dx 和d^2y/dx^2 sint-tcost/4t^3 和 sint-tc

∵x=1+t²,y=cost==>dx/dt=2t,dy/dt=-sint∴d²y/dx²=d(dy/dx)/dx=(d((dy/dt)/(dx/dt))/dt)/(dx

若0小于等于t小于2π且同时满足cost大于sint和tant小于sint,则t的取值范围

选A,cost大于sint推出【π/4,5/4π】,再有tant小于sint可以推出范围只能在A中

[(sint)^4-(sint)^6]从0 到π/2的积分是多少?[1-3cost+3(cost)^2-(cost)^3

这个在高数课本里有个公式,sint)^4从0到π/2的积分是:3/4*1/2*π/2同理:sint)^6从0到π/2的积分是:5/6*3/4*1/2*π/2结果就不说了第二个积分前两项不说,应该会,就

∫cost/(sint^2) dt =∫dsint/sint^2 =-1/sint + C

中间那步不用那样的.因为d(sint)=costdt,先把cost换到d里面就是:原式=∫【1/(sint^2)】dsint设sint=x化为∫(1/x^2)dx=-1/x+C再把x换回sint

limx→0[∫(0→x)cost^2dt]/[∫(0→x)(sint)/tdt]

limx→0[(∫(0→x)cost^2dt])'/([∫(0→x)(sint)/tdt)'](罗比达法则)=limx→0[(cosx^2)/((sint)/t)]=1/1=1再问:什么时候能用洛必达

(t-sint)(1-cost)√(1-cost)对t从0到2π积分,请问应该怎么积~

用三角函数里的二倍角公式,cost=1-2*(sint/2)^2,代入化简.再问:之后会出现t*(sin(t/2))^3积分,解不出来~?请问该怎么解?再答:作变量代换,sin(t/2)dt=-2*d

∫sint/(cost+sint)dt

∫sint/(cost+sint)dt=(1/2)∫[(sint+cost)+(sint-cost)]/(cost+sint)dt=(1/2)∫dt+(1/2)∫(sint-cost)/(cost+s

把曲线的参数方程化为一般方程:x=3sint,y=4sint,z=5cost (0小于等于t小于2pai)

x^2=9sin^ty^2=16sin^tz^2=25cos^t三式相加可得一般方程x^2+y^2+z^2=25

已知向量m=(a-sint,-1/2),n=(1/2,cost)

1)因为m∥n所以-sint/1/2=-1/2/costsint.cost=1/42sintcost=1/2sin2t=1/22)因为m垂直n时所以m.n=0(a-sint)/2-cost/2=0a-

如何直接看出0到pai/2定积分cost/(sint+cost)与sint/(sint+cost)相等?

只需令x=pi/2-t,则当x=0,t=pi/2,当x=pi/2,t=0,dx=-dt,那么∫(0,pi/2)cosx/(sinx+cosx)dx=-∫(pi/2,0)sint/(sint+cost)

设x=t^2+cost,y=1-sint,求dy/dx

解dy/dx=(1-sint)'/(t²+cost)'=(-cost)/(2t-sint)

x=sint-cost y=sint+cost 求它得普通方程

x=sint-costy=sint+cost则:x+y=2sintx-y=-2cost所以:(x+y)^2+(x-y)^2=2再问:这个不像圆的方程啊再答:这个是圆的方程。(x+y)^2+(x-y)^

不定积分(cost/sint的2次方)dt

这不是常见积分吗?背熟了就行了,不定积分(cost/sint的2次方)dt=不定积分cott^2dt=-csct+C=-1/sint+C;你错的地方在于(cost)^2与dsint不相等啊

1/(sint)^2和1/(cost)^2的不定积分

∫[1/(sint)^2]dt=-∫dcott=-cott+C∫[1/(cost)^2]dt=∫dtant=tant+C上面这两个属于基本公式,最好记住,对做题有好处.

a∫1/sint*dt-a∫sint*dt =a*ln|tan(t/2)|+a*cost+C

a∫1/sintdt=a∫1/(2sin(t/2)cos(t/2))dt【倍角公式】=∫1/(tan(t/2)[cos(t/2)]^2)d(t/2)【凑微分法】=∫1/(tan(t/2))d(tan(