(sint)^2*(cost)^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:24:14
∫(sint·cost)²dt=∫(½·sin2t)²dt=1/4·∫(sin2t)²dt=1/4·∫(1-cos4t)/2dt=1/8·∫(1-cos4t)d
dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d
∵x=1+t²,y=cost==>dx/dt=2t,dy/dt=-sint∴d²y/dx²=d(dy/dx)/dx=(d((dy/dt)/(dx/dt))/dt)/(dx
选A,cost大于sint推出【π/4,5/4π】,再有tant小于sint可以推出范围只能在A中
这个在高数课本里有个公式,sint)^4从0到π/2的积分是:3/4*1/2*π/2同理:sint)^6从0到π/2的积分是:5/6*3/4*1/2*π/2结果就不说了第二个积分前两项不说,应该会,就
中间那步不用那样的.因为d(sint)=costdt,先把cost换到d里面就是:原式=∫【1/(sint^2)】dsint设sint=x化为∫(1/x^2)dx=-1/x+C再把x换回sint
limx→0[(∫(0→x)cost^2dt])'/([∫(0→x)(sint)/tdt)'](罗比达法则)=limx→0[(cosx^2)/((sint)/t)]=1/1=1再问:什么时候能用洛必达
用三角函数里的二倍角公式,cost=1-2*(sint/2)^2,代入化简.再问:之后会出现t*(sin(t/2))^3积分,解不出来~?请问该怎么解?再答:作变量代换,sin(t/2)dt=-2*d
∫sint/(cost+sint)dt=(1/2)∫[(sint+cost)+(sint-cost)]/(cost+sint)dt=(1/2)∫dt+(1/2)∫(sint-cost)/(cost+s
x^2=9sin^ty^2=16sin^tz^2=25cos^t三式相加可得一般方程x^2+y^2+z^2=25
1)因为m∥n所以-sint/1/2=-1/2/costsint.cost=1/42sintcost=1/2sin2t=1/22)因为m垂直n时所以m.n=0(a-sint)/2-cost/2=0a-
只需令x=pi/2-t,则当x=0,t=pi/2,当x=pi/2,t=0,dx=-dt,那么∫(0,pi/2)cosx/(sinx+cosx)dx=-∫(pi/2,0)sint/(sint+cost)
解dy/dx=(1-sint)'/(t²+cost)'=(-cost)/(2t-sint)
x=sint-costy=sint+cost则:x+y=2sintx-y=-2cost所以:(x+y)^2+(x-y)^2=2再问:这个不像圆的方程啊再答:这个是圆的方程。(x+y)^2+(x-y)^
这不是常见积分吗?背熟了就行了,不定积分(cost/sint的2次方)dt=不定积分cott^2dt=-csct+C=-1/sint+C;你错的地方在于(cost)^2与dsint不相等啊
∫[1/(sint)^2]dt=-∫dcott=-cott+C∫[1/(cost)^2]dt=∫dtant=tant+C上面这两个属于基本公式,最好记住,对做题有好处.
a∫1/sintdt=a∫1/(2sin(t/2)cos(t/2))dt【倍角公式】=∫1/(tan(t/2)[cos(t/2)]^2)d(t/2)【凑微分法】=∫1/(tan(t/2))d(tan(